\qquad

AF-109

April-2023

B. Com, Sem.-VI

CE-303 (B) : Statistics

(Advanced Statistics IX)

Time : $\mathbf{2 ½}$ Hours]
[Max. Marks : 70

સૂચનાઓ : (1) જમણી બાજુના અંક ગુણ દર્શાવે છે.
(2) સાદા ગણનયંત્રનો ઉપપયોગ કરી શકશો.
(3) જરૂરી કોષ્ટકીય કિંમતો પ્રશ્નપત્રના અંતે આપેલ છે.

1. નીચેનાનાં જવાબ લખો :
(i) માંગનો નિયમ સમજાવો.

એક વસ્તુનો માંગનો નિયમ $x p-a p=b$ છે. જ્યાં p કિંમત, x જથ્થો તથા a અને b અચળાંકો છે. જ્યારે કિંમત એકમ દીઠ ₹ 25 હતી ત્યારે માંગ 5000 એકમ હતી અને જ્યારે કિંમત એકમ દીઠ ₹ 30 થઈં ત્યારે માંગ 4000 એકમ હતી. માંગનો નિયમ શોધો. જ્યારે કિંમત ₹ 40 હોય ત્યારે માંગ શોધો.
(ii) જો y $=2 x^{3}+3 x^{2}-36 x+30$ હોય તો yની મહત્તમ અને લઘુત્તમ કિંમત શોધો.

અથવા
(i) માંગનો વક્ર $2 \mathrm{P}+5 x=50$ અને પુરવઠાનો વક્ર $3 \mathrm{P}=2 x+25$ છે. જો દ૨ એકમ દીઠ ₹ 3 નો સ૨કારી કર હોય તો બજાર સંતુલન કિંમત, જથ્થો અને સરકારની કુલ આવક શોધો.
(ii) એક ઈજારદાર માટે વસ્તુની માંગનો નિયમ અને સરેરાશ ખર્ચનું વિધેય અનુક્રમે $p=200-0.5 x$ અને $\mathrm{C}=0.5 x^{2}-800 x-400$ છે. તો મહત્તમ નફા માટે કેટલા એકમો બનાવવા જોઈએ ? મહત્તમ નફા માટે ઉત્પાદન અને તેને અનુરૂપ નફો મેળવો.
2. નીચેનાનાં જવાબ લખો :
(i) સમરૂપ વિધેય માટે ઓઇલ૨નો નિયમ લખો અને વિધેય $Z=\frac{2 x+3 y}{x-2 y}$ માટે ઓઈલ૨ના નિયમની ચકાસણી કરે.
(ii) એક ગ્રાહક માટે તુષ્ટિગુણનું વિધેય $\mathrm{U}=6 x+2 x y$ છે. જો તેનું બજેટનું સમીકરણ $2 x+\mathrm{y}=57$ હોય જ્યાં x અને y વસ્તુ A અને Bના અનુક્રમે ખરીદેલા એકમ છે. તો મહત્તમ તુષ્ટિગુણ માટે x અને y ની કિંમત મેળવો. તેમજ મહત્તમ તુષ્ટિગુણ પણ મેળવો.

અથવા
(i) જો $\mathrm{Z}=\log \left(3 x^{2}+5 x y-2 y^{2}\right)$ હોય તો $\frac{\partial^{2} Z}{\partial x \partial y}$ અને $\frac{\partial^{2} Z}{\partial y \partial x}$ શोધો.
(ii) જો વસ્તુના ખર્ચનું વિધેય $\mathrm{C}=5 x+3 y$ અને ઉત્પાદન વિધેય $x \cdot y^{2}=300$ હોય જ્યાં x અને y અનુક્રમે મજૂરી અને રોકાયેલી મૂડી છે. તો x અને yની કિંમતો મેળવો કે જેથી ખર્ચ ન્યૂનતમ બને. ન્યૂનતમ ખર્ચ પણ શોધો.
3. નીચેનાનાં જવાબ લખો :
(i) વ્યાજના જુદાં જુદાં પ્રકારો વર્ણવવો. અમુક ૨કમ ઉપ૨ ત્રણ વર્ષનું સાદું વ્યાજ ₹ 36,000 છે જ્યારે તે ૨કમ ઉપ૨ તેટલા જ વર્ષનું ચક્રવૃદ્ધિ વ્યાજ ₹ $38,956.8$ છે તો ૨કમ અને વ્યાજનો દ૨ શોધો.
(ii) XYZ લિ. ₹ 20,00,000 ના ખર્ચે એક યંત્ર ખરીદવા માંગે છે. તેનું અપેક્ષિત આયુષ્ય 7 વર્ષ છે. આ યંત્રને લીધે દ૨ વર્ષે ₹ 3,80,000નો વધારાનો નફો થઈ શકે છે. જો વ્યાજનો દ૨ 7\% હોય તો યંત્ર ખરીદવું ફાયદાકારક ગણાય ?

અથવા

(i) એક વ્યક્તિ ₹ $10,00,000$ બેંકમાં જમા કરાવે છે અને 4 વર્ષ પછી તે વ્યક્તિ તેમાંથી ₹ $3,50,000$ નો ઉપાડ કરે છે. જો વ્યાજનો દ૨ 8% હોય તો તેને છઠા વર્ષના અંતે તેના ખાતામાં કેટલા ફપિયા હશે ?
(ii) એક કંપની ₹ 50,00,000ની કિંમતે એક મશીન ખરીદે છે કે જેનું અંદાજીત આયુષ્ય 8 વર્ષનું છે. 8 વર્ષ પછી નવા મશીનની કિંમતમાં 40% નો વધારો થવાની સંભાવના છે. આ માટે સીન્કીંગ ફંડ ૨ચવામાં આવ્યું અને દ૨ વર્ષે ₹ $10,00,000$ રોકવામાં આવે છે અને તેના ઉિપ૨ વાર્ષિક 10% ચક્રવૃદ્ધિ વ્યાજ મળે છે. શું આ સીન્કીંગ ફંડ પર્યાપ્ત છે ?
4. નીચેનાનાં જવાબ લખો :
(i) ન્યૂનતમ વર્ગની ફીતનો સિદ્ધાંત એટલે શું ? આ સિધ્ધાંતનો ઉપયોગ કરીને સુરેખાનું અન્વાયોજન કરવા માટેના પ્રમાણ્ય સમીક૨ણો મેળવો.
(ii) નીચે આપેલી માહિતી પરથી $\mathrm{y}=\mathrm{ab}{ }^{x}$ નું અન્વાયોજન કફો અને જ્યારે $x=6$ હોય ત્યારે y ની કિંમતનું અનુમાન કરે :

x	1	2	3	4
y	10	20	40	80

અથવા
(i) નીચે આપેલી માહિતી પરથી $y=a x^{b}$ નું અન્વાયોજન કરો અને જ્યારે $x=20$ હોય ત્યારે $y ન ી$ કિંમતનું અનુમાન કરો :

x	10	25	35	40	50
y	120	140	165	185	200

(ii) નીચે આપેલી માહિતી માટે દ્વિઘાતી પશવલય વક્નું અન્વાયોજન કરે અને જ્યારે $x=9$ હોય ત્યારે yની કિંમતનું અનુમાન કરે :

x	3	5	6	10	12
y	18	25	36	45	56

5. નીચેનાનાં જવાબ લખો : (કોઈ゙પણ સાત)
(1) માંગ અને પુરુઠા પ૨ ક૨વે૨ા અને સ૨કારી સહાયની અસ૨ ચર્ચો.
(2) બજા સમતુલા એટલે શું?
(3) દ્દિ-ઈજજરાશાહીની વ્યાખ્યા આપો.
(4) સમફૂપ વિધેય એટલે શું?
(5) વિધેયનું આંશિક વિકલન छદાહરણ આપી સમજાવો.
(6) かो $\mathrm{Z}=2 x^{4}+3 x y^{3}+5 x^{2} \mathrm{y}^{2}-4 y^{4}$ હોય તો $\frac{\partial^{2} Z}{\partial x^{2}}$ शोधો.
(7) એન્યુઈીી (વર્ષાસન) ના જુદાં જુદાં પ્રકાર વર્ણવો.
(8) કેટલા ચક્રવૃદ્ધિ વ્યાજના ઢરે કોઈீ ૨કમ 8 વર્ષમાં ત્રણ ગણી થાય ?
(9) વર્ષનું 5% ચર્રવૃఁ્ધ્ય વ્યાજ માસિક દરે મળતું હોય તે વધુ સાફુંકે વર્ષનું 5.2% સાહું વ્યાજ મળે તે વધુ સાહું?
(10) વર્રનું અન્વાયોજન એટલે શું ? તેના ઉપયોગો જણાવો.
(11) દ્વિઘાતી પ૨વલય વક્રનું અન્વાયોજન ક૨વા માટેના પ્રમાણ્ય સમીકરણો લખો.
(12) $y=a e^{b x} વ ક ્ ર ન ુ ં ~ અ ન ્ વ ા ય ો જ ન ~ ક ૨ વ ા ન ી ~ પ દ ્ ધ ત િ ~ વ ર ્ ણ ઼ વ ો . ~$
$\log 10=1, \log 5=0.6990 . \log 20=1.3010, \log 25=1.5440, \log 35=1.5440, \log 40=$ $1.6020, \log 45=1.6532, \log 50=1.6990, \log 80=1.9031, \log 100=2, \log 120=$ $2.0792, \log 125=2.0969, \log 140=2.1461, \log 165=2.2175, \log 180=2.2553, \log$ $185=2.2672, \log 200=2.3010, \log \mathrm{e}=\log 2.7183=0.4343$

Antilog $(0.6990)=5, \operatorname{Antilog}(0.3010)=2$, Antilog $(1.7462)=55.7442$, Antilog $(2.1557)=143.12, \operatorname{Antilog}(1.3898)=24.5358$, Antilog $(2.71556)=519.4694$, Antilog $(1.7462)=55.7442, \operatorname{Antilog}(2.1557)=143.12$, Antilog $(1.3898)=24.5358$, Antilog $(2.71556)=519.4694$

Seat No. : \qquad

AF-109

April-2023

B. Com, Sem.-VI

CE-303 (B) : Statistics

(Advanced Statistics IX)

Time: $\mathbf{2 1}^{1 ⁄ 2}$ Hours]
[Max. Marks : 70

Instructions : (1) Figures to the right indicate the full marks of that question.
(2) Use of simple calculator is allowed.
(3) Necessary tabulated values are given at the end of question paper.

1. Write the following :
(i) Explain Demand Law.

A demand function of a commodity is $x p-a p=b$, where p is the price, x is quantity and a and b are constants. When the price is ₹ 25 per unit, its demand is 5000 units and when the price is ₹ 30 per unit, its demand is 4000 units. Find demand function. Find demand if price is ₹ 40 .
(ii) Find maximum and minimum values of y if $y=2 x^{3}+3 x^{2}-36 x+30$.

OR

(i) Demand curve is $2 \mathrm{P}+5 x=50$ and Supply curve is $3 \mathrm{P}=2 x+25$. If the government tax per unit is ₹ 3 , find market equilibrium price, quantity and total revenue for government.
(ii) The demand and average cost functions of a commodity for a monopolist are $\mathrm{p}=$ $200-0.5 x$ and $C=0.5 x^{2}-800 x-400$ respectively. Find the production for maximum profit and corresponding profit.
2. Write the following :
(i) State Euler's theorem for homogeneous function and verify Euler's theorem for the function $Z=\frac{2 x+3 y}{x-2 y}$.
(ii) The utility function of a consumer is $\mathrm{U}=6 x+2 x y$ and his budget equation is $2 x+y=57$ where x and y represents the units purchased of commodities A and B respectively. Find the values of x and y so as to maximize the utility function. Also find the maximum utility.

OR

(i) If $Z=\log \left(3 x^{2}+5 x y-2 y^{2}\right)$ then find $\frac{\partial^{2} Z}{\partial x \partial y}$ and $\frac{\partial^{2} Z}{\partial y \partial x}$.
(ii) The cost function of a commodity is $\mathrm{C}=5 x+3 y$ and the production function is $x \cdot y^{2}=300$ where x and y represents the labour and capital used respectively. Find the values of x and y so as to minimize the total cost. Also find the minimum cost.
3. Write the following :
(i) Explain different types of interest. The simple interest on some amount is ₹ 36,000 for three years while the compound interest for that amount for the same period is $₹ 38,956.8$. Find the amount and rate of interest.
(ii) XYZ Limited wants to purchase a machine costing ₹ $20,00,000$. The expected life of the machine is 7 years. There will be net profit of ₹ $3,80,000$ per year because of this machine. If the rate of interest is 7%, will it be beneficial to purchase that machine ?

OR

(i) A man deposits ₹ $10,00,000$ in a bank. After 4 years, he withdraws ₹ $3,50,000$ from the bank. If the rate of interest is 8% then find the amount in account at the end of $6^{\text {th }}$ year.
(ii) A company purchases a machine at the cost of ₹ $50,00,000$ whose expected life is of 8 years. A new machine would be cost 40% more than the current price after 8 years. It is decided to create sinking fund and transfer a sum of ₹ $10,00,000$ every year. This amount would be invested at 10% rate of compound interest. Is this sinking fund sufficient?
4. Write the following :
(i) What is Principle of least squares? Obtain normal equations to fit an equation of straight line by using principle of least square.
(ii) For the following data, fit $\mathrm{y}=\mathrm{ab}^{x}$ and estimate the value of y for $\mathrm{x}=6$:

x	1	2	3	4
y	10	20	40	80
OR				

(i) For the following data, fit $\mathrm{y}=\mathrm{ax} \mathrm{x}^{\mathrm{b}}$ and estimate the value of y for $\mathrm{x}=20$.

x	10	25	35	40	50
y	120	140	165	185	200

(ii) For the following data, fit second degree parabola curve and estimate the value of y for $x=9$:

x	3	5	6	10	12
y	18	25	36	45	56

5. Write the following : (Any Seven)
(1) Discuss the effect of taxation and government subsidy on demand and supply.
(2) What is market equilibrium?
(3) Write the definition of duopoly.
(4) What is homogeneous function?
(5) Define partial derivative of a function with example.
(6) If $Z=2 x^{4}+3 x y^{3}+5 x^{2} y^{2}-4 y^{4}$ then find $\frac{\partial^{2} Z}{\partial x^{2}}$.
(7) Discuss various types of Annuity.
(8) At what rate of compound interest would a sum become three times in 8 years ?
(9) Which is better investment, 5% per year compounded monthly or 5.2% per year simple interest?
(10) What do you mean by Curve Fitting? Write its uses.
(11) Write the normal equations to fit quadratic equation.
(12) Write the procedure to fit the equation $\mathrm{y}=\mathrm{ae} \mathrm{e}^{\mathrm{b} x}$.
$\log 10=1, \log 5=0.6990 . \log 20=1.3010, \log 25=1.5440, \log 35=1.5440, \log 40=$ $1.6020, \log 45=1.6532, \log 50=1.6990, \log 80=1.9031, \log 100=2, \log 120=$ $2.0792, \log 125=2.0969, \log 140=2.1461, \log 165=2.2175, \log 180=2.2553, \log$ $185=2.2672, \log 200=2.3010, \log \mathrm{e}=\log 2.7183=0.4343$

Antilog $(0.6990)=5$, Antilog $(0.3010)=2$, Antilog $(1.7462)=55.7442$, Antilog $(2.1557)=143.12, \operatorname{Antilog}(1.3898)=24.5358, \operatorname{Antilog}(2.71556)=519.4694$, Antilog $(1.7462)=55.7442, \operatorname{Antilog}(2.1557)=143.12, \operatorname{Antilog}(1.3898)=24.5358$, Antilog $(2.71556)=519.4694$

