Seat No. : \qquad
AE-125
April-2023
B.Sc., Sem.-VI

CC-310 : Mathematics
Time: $\mathbf{2 1}^{1 ⁄ 2}$ Hours]
[Max. Marks: 70

Instructions: (i) Attempt all questions.
(ii) Notations are usual everywhere.
(iii) The right hand side figures indicate marks of the sub question.

1. (a) Define the following terms and give an example for each :
(i) Bipartite Graph
(ii) Induced Subgraph
(iii) Edge deleted subgraph
(iv) Underlying simple graph
(b) Define isomorphism of graphs. Show that the following graphs(Fig. - 1) are isomorphic.

Fig. -1
OR
(a) Given any two vertices u and v of a graph G, prove that every $u-v$ walk contains a $u-v$ path.
2. (a) If T is a tree with n vertices then prove that it has precisely $\mathrm{n}-1$ edges.
(b) Define the adjacency and incidence matrices of a graph and write both for the following-graphs (Fig. -2) :

Fig. - 2

OR

(a) Prove that an edge e of a graph G is a bridge if and only if e is not part of any cycle in graph G.
(b) Let G be a graph with n vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{n}}$ and let A denote the adjacency matrix of G w.r.t. this listing of the vertices. Let k be any positive integer and let A^{k} denote the matrix multiplication of k copies of A. Then prove that $(i, j)^{\text {th }}$ entry of A^{k} is the number of different $v_{i}-v_{j}$ walks in G of length k.
3. (a) Prove that a graph G is connected if and only if it has a spanning tree.
(b) Give a list of all spanning trees, including isomorphic ones, of the complete graph K_{4}.

OR

(a) Prove that, if a vertex v of a connected graph G is a cut vertex of G then, there are two vertices u and w of G different from v such that v is on every $u-w$ path in G.
(b) For the following graph (Fig. - 3), find (i) all cut vertices (ii) all bridges (iii) a spanning tree (draw it) (iv) connectivity and (v) all n for which it is n -connected.

Fig. -3
4. (a) Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
(b) Find closure of the graph (Fig - 4):

Fig. -4
OR
(a) Write a short note on Königsberg seven bridges problem.
(b) Define closure of a graph. Prove that a simple graph G is Hamiltonian if and only if its closure $\mathrm{c}(\mathrm{G})$ is Hamiltonian.
5. Attempt any SEVEN of the followings in short:
(i) Find the graph $\mathrm{G}-\{\mathrm{O}\}$ for the graph G of above $\mathrm{Q} .4(\mathrm{~b})$ (Fig. -4).
(ii) Define forest. Is every tree a forest? Why?
(iii) Draw fusion graph from the graph in (Fig. -4) by fusing vertices T and O .
(iv) If connected graph G has 201 edges what is the maximum possible number of vertices in G? Why?
(v) Define a bridge and give an example.
(vi) A graph G is acyclic graph and it has 6 vertices and 5 edges. Is it tree? Why?
(vii) Define connectivity and n-connected graph.
(viii) A connected graph has a cut vertex. Must it be 2-connected? Why?
(ix) Define minimal spanning tree.
(x) Give an example of the maximal non Hamiltonian graph.
(xi) Find a Hamiltonian cycle in graph (Fig. - 4) (if exists).
(xii) Find an Euler tour in the graph (Fig. - 4) (if exists).

