Seat No. : \qquad

AD-132

April-2023
B.Sc., Sem.- VI

CC-309 : Physics
Time : 2:30 Hours]
[Max. Marks: 70
સૂચનાઓ : (1) સંજ્ઞાઓ તેમનાં પ્રચલિત અર્થ ધરાવે છે.
(2) Єરેક પ્રશ્નનાં ગુણ સ૨ખા છે.

1. (a) સમાન ચુંબકીય ક્ષેત્ર તથા દોલિત વિદ્યુતક્ષેત્રમાં વિદ્યુતભારિત કણની ગતિ સમજાવો.

અથવા

મેક્સવેલનાં સમીકરણ આપો તથા સાતત્ય સમીક૨ણ મેળવી, તે પ૨થી વ્યક્ત થતું વીજભારનું સં૨ક્ષણ મેળવો.
(b) પરસ્પ૨ કાટખૂણે \vec{E} તથા \vec{B} ક્ષેત્રમાં \vec{v} ગતિએ ગતિશીલ કણની ગતિની ચર્ચા કરો તથા ડ્રિફટ ગતિ $\vec{v}_{D}=\frac{\vec{E} \times \vec{B}}{B^{2}}$ નાં સમીકરણ મેળવો.

અથવા
સમય પ૨ આધારિત વિદ્યુતક્ષેત્ર અને સમાન ચુંબકીય ક્ષેત્રમાં ગતિ ક૨તાં વિદ્યુતભારિત કણ માટે પોલરાઝેશન ડ્રિફટ વેગનું v_{P} સમીક૨ણ મેળવો.
2. (a) સમાંગી પ્લાઝમા માટે મેક્સવેલનાં સમીકરણ મેળવો.

અથવા
પ્લાઝમા આવૃત્તિ મેળવવા માટે વેકલ્પિક પદ્ધતિ સમજાવો.
(b) ડિબાય સ્ક્રીનિંગ સમજાવો. ગિબ્સ-બોલ્ટ્ઝમેન નિયમનો ઉિપયોગ કરી, ડિબાય લંબાઈનું માટેનું સૂત્ર મેળવો.

અથવા

પ્લાઝમા શીથ સમજાવો. મેક્સવેલ વેગ વિત૨ણ (f_{α}) નો ઉપયોગ કરીને સપાટી સાથે એકમ સમય અને એકમ ક્ષેત્રફળ દીઠ અથડામણા અનુભવતા કણોની કુલ સંખ્યા $\sqrt{\alpha}$ મેળવો. અંતે દર્શાવો કે $\overline{\mathrm{i}}=$ e માટે સંતુલન મળે છે.
3. (a) અસંभિત ન્યુક્લિયર વિખંડન વિશે વર્ણાવો. જુદી - જુદી વિખંડન શૃંખલા પ્રક્રિયાઓ માટે વિખંડન ટુકડાઓના દ્રવ્યમાન વિતરણ દર્શાવતી આકૃતિ દોરો.

ન્યુક્લિય૨ દ્વિભાજન સાંકળ પ્રક્રિયા સવિસ્તાર સમજાવો.
(b) મોસબાર અસર એટલે શું ? મોસબા૨ અસર માટેની પ્રાયોગિક ગોઠવણી વર્ણાવો.

અથવા

તારાઓમાં ઉદભવતી ન્યુક્લિય૨ સંલયન પ્રક્રિયા વર્ણાવો.
4. (a) ચાર મૂળભભૂત બળો સવિસ્તાર ચર્ચો.

અથવા
ઉદાહ૨ણા સાથે સમજાવો : લેપ્ટોન સંખ્યા સં૨ક્ષણ, બેરીઓન સંખ્યા સં૨ક્ષણ, સ્ટ્રેન્જનેસ સંખ્યા સંરક્ષણ
(b) ક્વાર્ક મોડેલ વર્ણવો.

અથવા
મિસોન વિશે ટૂંકનોંધ લખો.
5. જણાવ્યા મુજબ કરો. (કોઈપણ સાત)
(1) ચુંબકીય ક્ષેત્રમાં પારામાં Alfven તરંગનો વેગ શોધો. $\mathrm{B}=10^{-2}$ Tesla.
$\left(\rho=13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right.$ and $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)$
(2) 4×10^{-5} ગૌસ ચુંબકીય ક્ષેત્રમાં ૨હેલા સૌ૨ પવન પ્રોટોનનો વેગ $300 \mathrm{~km} \mathrm{sec}^{-1}$ હોય તો $\left(\mathrm{V}_{11}\right.$ અવગણતાં) તેની લાર્મર ત્રિજ્યા ગણો. ($\mathrm{m}=1.67 \times 10^{-27} \mathrm{~kg}$, e $\left.=1.6 \times 10^{-19} \mathrm{C}\right)$
(3) પ્લાઝમાની અંદરની ત્રણ પ્રકારની ઈનસ્ટેબીલીટીનાં નામ આપો.
(4) સાયક્લોટ્રોન હીટિંગ શું છે ?
(5) આયન-સાઇક્લોટ્રોન અનુનાદ અને ઈલેક્ટ્રોન-સાઇક્લોટ્રોન અનુનાદ એટલે શું ?
(6) લેન્ડાઉ અવમંદન એટલે શું ? તે કયા કારણથી ઉદ્દભવે છે ?
(7) દ્વિભાજન સાંકળ પ્રક્રિયા માટે $\mathrm{k}=1, \mathrm{k}<1$ અને $\mathrm{k}>1$ માટેનાં પરિણામ લખો.
(8) જો દ્વિભાજન પ્રક્રિયા 1000 ન્યૂટ્રોન અને ગુણાકાર પરિબળ $k=1.03$ થી શર થાય છે તો હજારમી પેઢીમાં હાજ૨ ન્યૂટ્રોનની સંખ્યાની ગણતતરી કરે.
(9) ${ }_{92} \mathrm{U}^{235}$ ન્યુક્લિયસનાં વિખંડન દરમિયાન મુક્ત થતી ઊર્જાનું સંપૂર્ણ વિતરણ લખો.
(10) નીચે આપેલ પ્રક્રિયાઓ પૂર્ણ કરો :

$$
\begin{aligned}
& \pi^{-} \rightarrow \mu^{-}+ \\
& \pi^{+} \rightarrow \mu^{+}+
\end{aligned}
$$

(11) ઈન્ટ૨મીડીયેટ વેક્ટ૨ બોસોન વ્યાખ્યાયિત કરો અને તેનાં પ્રકાર લખો.
(12) કોઈપણ ચા૨ બે૨યોન કણનાં નામ અને સંજ્ઞા લખો.

Seat No. : \qquad

AD-132
 April-2023
 B.Sc., Sem.- VI
 CC-309 : Physics

Time : 2:30 Hours]

[Max. Marks : 70
Instructions : (1) Symbols carry their usual meanings.
(2) Each question carries equal marks.

1. (a) Explain the motion of a charged particle in a uniform magnetic field and oscillating electric field.

OR

Giving Maxwell's equation, derive the equation of continuity and explain how it expresses conservation of charge.
(b) Explain the motion of a particle moving with velocity $\overrightarrow{\mathrm{v}}$ in the perpendicular $\overrightarrow{\mathrm{E}}$ and \vec{B} fields and obtain the equation for its drift velocity $\vec{v}_{D}=\frac{\vec{E} \times \vec{B}}{B^{2}}$.

OR

Obtain the expression for polarization drift velocity v_{P} for a charged particle moving in a time dependent electric field and uniform magnetic field.
2. (a) Derive Maxwell's equations for homogeneous plasma.

OR
Discuss alternative method of derivation of plasma frequency.
(b) Explain Debye screening. Using Gibbs-Boltzmann law, derive the expression for Debye length.

OR

Explain plasma sheath. Using Maxwell's velocity distribution (f_{α}), obtain a value of total number of particles striking the surface per unit time per unit area ${ }^{\alpha}$. Show that finally equilibrium will reached when $\overline{\mathrm{i}}=\Gamma \mathrm{e}$.
3. (a) Explain asymmetrical nuclear fission. Sketch the mass distribution fission fragments for different fission chains of it.

Explain in detail nuclear fission chain reaction.
(b) What is Mossbauer effect ? Describe an experiment to study Mossbauer effect.

OR
Explain Nuclear fusion process in stars.
4. (a) Describe in detail the four fundamental forces.

OR

Explain with examples : Lepton number conservation, Baryon number conservation and strangeness number conservation.
(b) Explain Quark model.

OR

Write a short note on Mesons.
5. Do as directed: (any seven)
(1) Find the velocity of an Alfven wave in mercury in magnetic field of $\mathrm{B}=10^{-2}$ Tesla.
$\left(\rho=13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right.$ and $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)$
(2) Calculate the Larmor radius (neglecting V_{11}) for a solar wind proton having a velocity of $300 \mathrm{~km} \mathrm{sec}^{-1}$ in a magnetic field of 4×10^{5} gauss. ($\mathrm{m}=1.67 \times 10^{-27}$ $\mathrm{kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$)
(3) Name three types of instabilities occurring in plasma.
(4) What is cyclotron heating ?
(5) What is ion-cyclotron resonance and electron-cyclotron resonance?
(6) What is Landau damping ? Due to which reason it arises?
(7) For a fission chain reaction, write the outcome of $\mathrm{k}=1, \mathrm{k}<1$ and $\mathrm{k}>1$.
(8) If the fission process starts with 1000 neutrons and the multiplication factor $\mathrm{k}=1.03$, calculate the number of neutrons present in the thousandth generation.
(9) Write the complete distribution of released energy during the fission of ${ }_{92} \mathrm{U}^{235}$ nucleus.
(10) Complete the following reactions:

$$
\begin{aligned}
& \pi^{-} \rightarrow \mu^{-}+ \\
& \pi^{+} \rightarrow \mu^{+}+
\end{aligned}
$$

(11) Define intermediate vector bosons and write its types.
(12) Write name and symbol of any four Baryon particles.

