Seat No.:	

AC-133

April-2023

B.Sc., Sem.-VI

308 : Statistics (Sampling Techniques)

		(*************************************	
Time: 2:30 Hours] [Max. Marks		: 70	
1.	(a)	Show that SRSWOR provides more efficient estimate of \bar{y} relative to SRSWR.	7
	(b)	Show that for SRSWOR, sample variance is an unbiased estimate of population variance.	7
		OR	
	(a)	Show that for SRSWOR, sample mean is an unbiased estimate of population mean.	7
	(b)	Derive variance for SRSWOR.	7
2.	(a)	Prove that for stratified random sampling the variance of estimate \overline{y}_{st} is	
		$\sum_{h=1}^{l} W_h^2 \frac{s_h^2}{n_h} (1 - f_h).$	7
	(b)	Obtain $V(\bar{y}_{st})$ under Neyman Allocation.	7
		OR	
	(a)	Write short notes on "relative precision of stratified random sampling and simple random sampling".	7
	(b)	Explain stratified random sampling in detail.	7
3.	(a)	Derive variance of the mean of systematic sampling.	7
	(b)	Prove that a systematic sample has same precision as a corresponding stratified random sample with 1 unit per stratum if $\rho_{wst} = 0$.	7
		OR	
	(a)	Prove that the mean of systematic sample is more precised than mean of simple random sample if $S_{wsy}^2 > S^2$, where $S_{wsy}^2 = variance$ among units that lies within	
		the systematic sample.	7
	(b)	If the population consists of linear trend, give the relationship between variance of stratified sampling, simple random sampling and systematic sampling.	7

(b) If n units and m subunits from each chosen unit are selected by SRS then, $= N - n S^2 - M - m S^2$

$$V(y) = \frac{N-n}{N} \frac{S_1^2}{n} + \frac{M-m}{M} \frac{S_2^2}{mn}$$

OR

- (a) Explain: Sub sampling is regarded as incomplete sampling.
- (b) Show that in two stage sampling : $V(\hat{\theta}) = V_1 \left[E_2(\hat{\theta}) \right] + E_1 \left[V_2(\hat{\theta}) \right]$

5. Attempt any **seven**:

4.

(a)

14

7

- (1) Give the formula of Finite Population Correction if the sample of size n is drawn from population of size N.
- (2) How many possible sample of size n can be drawn from population of size N without replacement?
- (3) In which sampling method, probability of drawing a unit at each selection remains same?
- (4) Define simple random sampling with replacement.

Write a note on two stage sampling.

- (5) Give the formula of \bar{y} and \bar{y}_h for stratified random sampling
- (6) Give the confidence limits for population mean and population total for stratified random sampling.
- (7) When the systematic random sampling is more precised than the simple random sampling?
- (8) When the systematic random sample is having the same precision as corresponding stratified random sample?
- (9) Write two drawbacks of systematic sampling.
- (10) Explain what is sub sampling.
- (11) When two stage sampling reduces to a single stage sampling?
- (12) What is the appropriate sampling procedure, when an investigator wants a sample containing m units which possess a rare attribute?

AC-133 2