Seat No. : \qquad
AC-111
April-2023
B.Sc., Sem.-VI

CC-308 : Mathematics
(Analysis - II)
Time : 2:30 Hours]
[Max. Marks : 70
Instructions : (1) All the questions are compulsory.
(2) Notations and Terminology are standard.
(3) Figures to the right indicates the full marks.

1. (a) Define Riemann integrable function. Prove: If f is a monotone function on $[a, b]$ then $f \in R[a, b]$.
(b) Let $\mathrm{f}(x)=x^{2}$ on $[0,1]$. For $\mathrm{n} \in \mathbb{N}$, define $\mathrm{P}_{\mathrm{n}}=\left\{0, \frac{1}{\mathrm{n}}, \frac{2}{\mathrm{n}}, \frac{3}{\mathrm{n}}, \ldots, \frac{\mathrm{n}-1}{\mathrm{n}}, 1\right\}$ then compute $\lim _{n \rightarrow \infty} U_{P_{n}}$ and $\lim _{n \rightarrow \infty} L_{P_{n}}$. Is the function integrable? If so, find the value of the integral.

OR

(a) State and prove First Mean Value Theorem of Integral Calculus.
(b) State Second Mean Value Theorem of Integral Calculus. Find a point c in $\left[0, \frac{\pi}{2}\right]$ such that $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x=1$.
2. (a) If $\sum a_{n}$ diverges for all $a_{n}>0$ then show that the series $\sum \frac{a_{n}}{1+n a_{n}}$ is divergent.
(b) State and prove comparison test. Hence check the convergence of $\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n}!}$.

OR

(a) Define conditional convergence of the series. If $\sum a_{n}$ is absolutely convergent series then prove that it is convergent. Is the converse true?
(b) State condensation test. Hence check the convergence of $\sum_{n=2}^{\infty} \frac{1}{n(\operatorname{logn})^{\alpha^{\prime}}} \alpha \in \mathbb{R}$.
3. (a) If $\sum_{a_{n}}$ converges absolutely to A, then prove that any rearrangement of $\sum a_{n}$ also converges to A .
(b) Define Cauchy product of two series. If the series \sum_{a} and \sum_{b} converge absolutely to A and B respectively then prove that their Cauchy product series $\sum_{c_{n}}$ is convergent and if C is the sum of Cauchy product then $C=A B$.

OR

(a) State and prove Mertens' theorem.
(b) Discuss the convergence of following improper integrals :
(1) $\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x$
(2) $\int_{0}^{1} \frac{1}{x^{2}+x^{1 / 2}} \mathrm{~d} x$
4. (a) State and prove Binomial series theorem.
(b) Derive Taylor's formula with the integral form of the remainder for $\mathrm{f}(x)=\cos x$ about $\mathrm{a}=0$ in $(-\infty, \infty)$.

OR

(a) For $-1<x<1$, prove that $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{\mathrm{n}-1} \frac{x^{\mathrm{n}}}{\mathrm{n}}+\ldots$ (Use Cauchy's form of remainder).
(b) Find a power series solution of $y^{\prime \prime}-x y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$.
5. Attempt any seven questions in short :
(a) Give one function which is not Riemann integrable.
(b) Is $\lim _{\mathrm{n} \rightarrow \infty} x_{\mathrm{n}}=0$ a sufficient condition for convergence of $\sum_{\mathrm{n}=0}^{\infty} x_{\mathrm{n}}$? Justify.
(c) Give example of absolutely convergent series.
(d) Find a power series solution of $y^{\prime}-y=0$.
(e) Does $|f| \in R[a, b]$ implies $f \in R[a, b]$? Justify.
(f) Give example of conditionally convergence series.
(g) Discuss convergence of $\sum_{n=1}^{\infty} \frac{\mathrm{n}^{2}(x-2)^{\mathrm{n}}}{2^{\mathrm{n}}}$.
(h) State Taylor's formula with Lagrange's form of the remainder.
(i) Verify First Mean Value Theorem of Integral Calculus for the function $\mathrm{f}(x)=2 x+1$ on $[0,1]$.
(j) State Cauchy's root test.
(k) Define improper integral of the second kind.
(1) Define the exponential of x.

