\qquad

AC-129

April-2023

Int. MBA, Sem.-IV

Business Statistics
Time : 2:30 Hours]
[Max. Marks : 70
Instructions : (1) Statistical tables will be Provided on demand.
(2) Use of Non-programmable scientific calculator is allowed.

1. Attempt any two :
(1) With the usual notations, find p for the binomial random variable X if $\mathrm{n}=6$ and if $9 P(X=4)=P(X=2)$.
(2) In a certain factory turning out optical lenses, there is a small chance $\frac{1}{500}$ for any one lens to be defective. The lenses are supplied, in packets of 10 . Use Poisson distribution to calculate the no. of packets containing no defective, two defective, three defective lenses respectively in a consignment of 20,000 packets. $\left(\mathrm{e}^{-0.02}=0.9802\right)$
(3) Explain hyper geometric distribution with its properties.
2. Attempt any two :
(1) In normal distribution 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.
(2) The price of the well-known brand box range is from ₹ 2.80 to $₹ 3.14$, assume these prices are uniformly distributed. What are the average price and standard deviation of prices in this distribution ? If price is randomly selected, what is the probability that it will be between ₹ 3 to ₹ 3.10 ?
(3) Define uniform distribution. Also write its properties.
3. Attempt any two :
(1) The covariance of two perfectly correlated variables X and Y is 96 . Determine σx and σy if it is known that the variance of x and that of y is in the ratio of $4: 9$.
(2) Family income and its percentage spent on food in the case of hundred families gave the following distribution. Calculate the co-efficient of correlation and interpret it.

Food expenditure in (\%)	Family income (₹)				
	$200-300$	$300-400$	$400-500$	$500-600$	$600-700$
$10-15$	-	-	-	3	7
$15-20$	-	4	9	4	3
$20-25$	7	6	12	5	-
$25-30$	3	10	19	8	-

(3) In a population of 1000 students, the number of married students is 400 . Out of 300 students who failed, 120 belong to the married group. Using Yule's co-efficient to determine the association between marriage and failure.
4. Solve the following :
(1) In the estimation of regression equation of two variables X and Y the following results were obtained:
$\Sigma x=900, \Sigma \mathrm{y}=700, \mathrm{n}=10, \Sigma x \mathrm{y}=3900, \Sigma x^{2}=6360, \Sigma \mathrm{y}^{2}=2860$, where x and y are deviation from respective means. Obtain two regression lines.
(2) The lines of regression of a bivariate population are : $8 x-10 y+66=0$ and $40 x-18 y=214$ and the variance of x is 9 .
Find: (a) The mean values of x and y.
(b) Correlation co-efficient between x and y.
(c) Standard deviation of y.
5. Attempt any two :
(1) In a trivariate distribution, if $\mathrm{r}_{12}=0.7, \mathrm{r}_{13}=0.61$ and $\mathrm{r}_{23}=0.4$ find all the multiple correlation co-efficients. Also obtain the standard errors of estimates $\sigma_{1.23}, \sigma_{2.13}$ and $\sigma_{3.12}$.
(2) In a certain trivariate distribution $\mathrm{r}_{12}=0.7, \mathrm{r}_{13}=\mathrm{r}_{23}=0.6$ and $\mathrm{S}_{1}=3, \mathrm{~S}_{2}=\mathrm{S}_{3}=5$

Find: (a) The partial correlation coefficients $\mathrm{r}_{12.3}$.
(b) Regression co-efficients $\mathrm{b}_{12.3}$.
(3) If all the correlation co-efficients of zero order are equal to ρ, prove that $r_{13.2}=\frac{\rho}{1+\rho}$ hence, using the relationship between total, multiple and partial correlation co-efficients, prove that $1-\mathrm{R}^{2}{ }_{1.23}=\frac{(1-\rho)(1+2 \rho)}{1+\rho}$.

