Seat No. : _____

AC-104

April-2023

B.C.A, Sem.-VI

CC-309 : Introduction to Artificial Intelligence and Machine Learning

Time : 2:30 Hours]

[Max. Marks : 70

AC-104		1 P.T.	0.				
	(11)	picture.	7				
	(i)	Explain unsupervised learning in detail.	7				
	<i>(</i> 1)	OR	_				
	(ii)	Explain semi-supervised learning and reinforcement learning.	7				
	(i)	Write a short note on supervised learning.	7				
4.	Writ	Write the following :					
	(ii)	List and explain applications of Natural Language Processing (NLP).	7				
	(i)	Write a short note on Information Extraction (IE).	7				
		OR					
	(ii)	Define language models. Explain different types of language models.	7				
21	(i)	What is Information Retrieval (IR) ? Explain HITS algorithms in detail.	7				
3.	Writ	the following :					
	(ii)	Define problem solving agent. Discuss problem, well-defined problems and solutions with example.	7				
	(i)	Explain Breadth First Search (BFS) and Bidirectional search with example.	7				
		OR					
	(ii)	Define informed search strategy. Explain A* search technique with example.	7				
	(i)	Explain problem solving approach by using 8-puzzle toy problem.	7				
2.	Writ	the following :					
	(ii)	Explain simple reflex agents and goal-based agents in detail.	7				
	(i)	List and explain various applications of AI.	7				
		OR					
	(11)	How can we specify a task environment with PEAS description? Explain with different agent types	7				
	(1)	Explain thinking humanly and acting rationally in detail.	7				
1.	Writ	Write the following :					

Atter	npt ar	ny seven out of twelve :			14		
(1)	To pa	ass the total Turing Test, the con	will need				
	(a)	robotics	(b)	computer vision			
	(c)	Both (a) and (b)	(d)	None			
(2)	The conc	is an abstract mather rete implementation, running wi	natica thin so	I description and the is a ome physical system.			
	(a)	agent function, agent program	(b)	agent program, agent function			
	(c)	agent function, environment	(d)	environment, agent function			
(3)	Give one example of single agent and multi-agent properties of task environment.						
(4)) The process of looking for a sequence of actions that reaches the goal is						
	(a)	solution	(b)	search			
	(c)	execution	(d)	None			
(5)	pansion at any given point is called the						
	(a)	repeated state	(b)	loopy path			
	(c)	frontier	(d)	None			
(6)	 6) Search algorithms are judged on the basis of (a) completeness, optimality, time complexity and space complexity. 						
	(b)) completeness, goal test function, time complexity and path cost function.					
	(c)	c) initial state, optimality, time complexity and actions.					
	(d)	initial state, goal test function,	time c	omplexity and space complexity.			
(7)	Text	Text classification is also called categorization. [True/False]					
(8)	Page	Rank (PR) algorithm is a used for	or				
	(a)	information retrieval	(b)	information extraction			
	(c)	information removal	(d)	None			
(9)	A l-g	gram(unigram) is a wor	d/s see	quence.			
	(a)	one	(b)	two			
	(c)	three	(d)	four			
(10)	0) The goal ofalgorithm is to learn policy.						
	(a)	Supervised learning	(b)	Unsupervised learning			
	(c)	Semi-Supervised learning	(d)	Reinforcement learning			
(11)	Give learn	any one difference between	supe	ervised learning and semi-supervised			

(12) The cluster analysis is a technique of grouping similar sets of objects in the same group that is different from the objects in another group. [True/ False]