Seat No. : \qquad

AB-117

April-2023
B.Sc., Sem.-VI

CC-307 : Physics
(Mathematical Physics, Classical Mechanics \& Quantum Mechanics)

Time : 2:30 Hours]
[Max. Marks : 70

સૂચનાઓ : (1) તમામ પ્રશ્નોના ગુણ સ૨ખા છે.
(2) સંજ્ઞાઓનાં અર્થ હંમેશ મુજબનાં છે.

1. (a) સાબિત કરો કે J ${ }_{\mathrm{n}-1}(x)-\int_{\mathrm{n}+1}(x)=\frac{2 \mathrm{n}}{x} \int_{\mathrm{n}}(x)$

અથવા
(a) જો v પૂર્ણાંક ન હોય તો દર્શાવો કે Wronskian,

$$
\begin{equation*}
\mathrm{W}\left[J_{v}(x), J_{-v}(x)\right]=-\frac{2 \sin \pi v}{\pi x} \tag{7}
\end{equation*}
$$

(b) સાબિત કરો કે, $\cos x=\jmath_{\mathrm{o}}(x)+2 \sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \jmath_{2 \mathrm{n}}(x)$

અથવા
(b) સાબિત કરો કे, $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cdot \sin x$
2. (a) લાગ્રાન્જેનાં સમીક૨ણનો ઉપયોગ કરી ન્યૂટનની ગતિનું સમીક૨ણા તા૨વો. અથવા
(a) દર્શાવો કे સમતલમાં બે બિંદુઓ વચ્ચેનું ન્યૂનૂમમ અંતર સુરેખા છે.
(b) સમાંતર અને શ્રેણી L-C-R પરિપથ માટે લાગ્રાન્જીયન મેળવો.

અથવા
(b) કોન્ફીગ્યુરેશન અવકાશ, વેગમાન અવકાશ અને ફેઝ-સ્પેસ વર્ણાવો. દર્શાવો કે એક પરિમાણીય દોલક (one dimensional harmonic oscillator) માટે ફેઝ-પથનો ઢાળ, $\frac{-\mathrm{m} \omega^{2} x}{\mathrm{P}}$ છે.
3. (a) ત્રિ-પરિમાણ કૂપનાં અંદરના ભાગમાં ત્રિજ્યાવર્તી શ્રોડિંજ૨ સમીકરણનો ઉેકેલ મેળવો.

અથવા

(a) ત્રિ-પરિમાણીક સમ-દિક્ધર્મી દોલક માટે સાબિત કરો કे

$$
\mathrm{E}_{\mathrm{n}}=\left(\mathrm{n}+\frac{3}{2}\right) \hbar \omega
$$

(b) ત્રિ-પરિમાણીક કૂપનાં બહારનાં ભાગમાં, non-localized states (E > 0) ની ચર્ચા કરો.

અથવા

(b) H-atom માટે નીચેનાં સમીકરણનાં ઉપયોગથી, તેની ઉર્જા આયગન કિંમતનું મૂલ્ય મેળવો.

$$
\left.\begin{array}{l}
\frac{1}{\rho^{2}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\rho^{2} \cdot \frac{\mathrm{dR}}{\mathrm{~d} \rho}\right)+\left(-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right) \mathrm{R}(\rho)=0 \\
\text { અહીંયા, } \mathrm{R}(\rho)=\frac{u(\rho)}{\rho} \text {, એસીમ્પटોટીક પ્રદેશમાં, } \mathrm{R}(\rho)=e^{-\rho / 2} \text { અને } \lambda=\frac{-\mathrm{z} \mathrm{e}}{} \mathrm{e}^{2} \\
\hbar
\end{array} \frac{\mu}{2 \mathrm{E}}\right]^{1 / 2} \text { છे. }
$$

4. (a) જો A એ સેલ્ફ-એડજોઈન્ટ કા૨ક હોય તો સાબિત કરો કે તેની આયગન કિંમત વાસ્તવિક છે અને તે પણ સાબિત કરો કે, $\left\langle a^{\prime} \mid a\right\rangle=0$ જ્યારે $a \neq a^{\prime}$

અહિં, |a> અને | $\left.a^{\prime}\right\rangle$ એ A ની આયગન સ્ટેટસ છે જ્યાં તેની આયગન કિંમતો અનુક્રમે a અને a^{\prime} छे.

અથવા

(a) સાબિત કરો કે, $\psi^{\prime}(x)=\mathrm{e} \frac{\mathrm{i} \xi \mathrm{Px}}{\hbar} \psi(x)$
(b) સાબિત કરો કે, $\langle x| \hat{\mathrm{P}}|x\rangle=-\mathrm{i} \hbar \frac{\mathrm{d} \psi}{\mathrm{d} x}(x)$
(b) સાબિત કરો કे, $\left|x^{\prime}\right\rangle=e^{-\mathrm{i} \theta \cdot \frac{\hat{\mathrm{L}}}{\hbar}} \cdot|x\rangle$
5. સૂચના મુજબ કરો. (કોઈૅપણ સાત - પ્રત્યેક પ્રશ્નનાં બે માર્ક્સ છે.)
(1) હર્માઈટનું વિકલ સમીક૨ણા અને લેંગુરીનું વિકલ સમીક૨ણ લખો.
(2) બેસલનાં વિધેય માટે generating function $\mathrm{g}(x, \mathrm{t})$ લખો અને ગામા વિધેય $\Gamma(\mathrm{z})$ વ્યાખ્યાયિત કરો.
(3) ગોળીીય ન્યુમાન વિધેય વ્યાખ્યાયિત કરો અને ગોળીય બેસલ વિધેય વ્યાખ્યાયિત કરો.
(4) $\Delta(\mathrm{d})$ variation અને δ-variation વશ્ચેનો તફાવત લખો.
(5) Geodesic (ભૂમાપન) વ્યાખ્યાયિત કરો.
(6) સરળ દોલક માટે લાગ્રાન્જીયન લખો.
(7) "L" ની વ્યાખ્યા T અને Vની મદદથી કરો.
(8) સમ-દિકધર્મી દોલક વ્યાખ્યાયિત કરો.
(9) ત્રિ-પરિમાણિકક કૂપ માટે zero point energy લખો.
(10) $\left(\mathrm{A}^{+}\right)^{+}$शું थાય ?
(11) $[\hat{x}, \hat{p}]$ અને $[\hat{p}, \hat{x}]$ ની કિંમતો લખો.
(12) એકમ કા૨ક $\hat{1}$ અને પ્રક્ષેપ કા૨ક (Projection Operator) $\hat{P a}$ વ્યાખ્યાયિત કરો.

Seat No. : \qquad

AB-117

April-2023
B.Sc., Sem.-VI

CC-307 : Physics
(Mathematical Physics, Classical Mechanics \& Quantum Mechanics)

Time : 2:30 Hours]
[Max. Marks : 70

Instructions: (1) All questions carry equal marks.
(2) Symbols have their usual meaning.

1. (a) Prove that $\jmath_{\mathrm{n}-1}(x)-\jmath_{\mathrm{n}+1}(x)=\frac{2 \mathrm{n}}{x} \jmath_{\mathrm{n}}(x)$

OR

(a) Show that the Wronskian,
$\mathrm{W}\left[J_{v}(x), J_{-v}(x)\right]=-\frac{2 \sin \pi v}{\pi x}$
If v is not integer.
(b) Prove that, $\cos x=\int_{\mathrm{o}}(x)+2 \sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \mathrm{J}_{2 \mathrm{n}}(x)$

OR

(b) Prove that, $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cdot \sin x$
2. (a) Derive Newton's equation of motion using Lagrangian equation.

OR

(a) Show that the shortest distance between two points in a plane is a straight line.
(b) Obtain Lagrangian for series and parallel L-C-R circuits.

OR

(b) Explain configuration space, momentum space and phase space. Show that the slope of the phase path for one dimensional harmonic oscillator is $\frac{-\mathrm{m} \omega^{2} x}{\mathrm{P}}$
3. (a) Using radial Schrodinger equation, obtain the solution in the interior region of square well potential.

OR

(a) For three dimensional isotropic harmonic oscillator, prove that $\mathrm{E}_{\mathrm{n}}=\left(\mathrm{n}+\frac{3}{2}\right) \hbar \omega$
(b) Discuss non-localized states $(\mathrm{E}>0)$ in outer region of the three dimensional square well potential.

OR

(b) Using the following equation for H -atom,

$$
\frac{1}{\rho^{2}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\rho^{2} \cdot \frac{\mathrm{dR}}{\mathrm{~d} \rho}\right)+\left(-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right) \mathrm{R}(\rho)=0
$$

Here, $\mathrm{R}(\rho)=\frac{u(\rho)}{\rho}$, in asymptotic region
$\mathrm{R}(\rho)=e^{-\mathrm{\rho} / 2}$ and $\lambda=\frac{-\mathrm{z} \mathrm{e}}{} \mathrm{e}^{2}\left[\frac{\mu}{2 \mathrm{E}}\right]^{1 / 2}$ obtain the energy eigen value of H-atom.
(b) Using the form
4. (a) If A is a self-adjoint operator, prove that its eigen value is real. Also prove that,

$$
\left\langle\mathrm{a}^{\prime} \mid \mathrm{a}\right\rangle=0 \text { when } \mathrm{a} \neq \mathrm{a}^{\prime}
$$

Here, $|a\rangle$ and $\left|a^{\prime}\right\rangle$ are eigen states of A with respective eigen values " a " and " a '".

OR

(a) Prove that $\psi^{\prime}(x)=\mathrm{e} \frac{\mathrm{i} \xi \operatorname{Px}}{\hbar} \psi(x)$

7
(b) Prove that $\langle x| \hat{\mathrm{P}}|x\rangle=-\mathrm{i} \frac{\mathrm{d} \psi}{\mathrm{d} x}(x)$ OR
(b) Prove that $\left|x^{\prime}\right\rangle=e^{-i \theta n \cdot \frac{\hat{L}}{\hbar}} \cdot|x\rangle$
5. Do as directed : (any seven - Each question carries two marks)
(1) Write down Hermite differential equation and Laguerre differential equation.
(2) Write the generating function $\mathrm{g}(x, \mathrm{t})$ for Bessel function and define gamma function $\Gamma(\mathrm{z})$.
(3) Define spherical Neumann function and spherical Bessel function.
(4) Write the difference between $\Delta(\mathrm{d})$ variation and δ-variation.
(5) Define geodesic.
(6) Write Lagrangian for simple pendulum.
(7) Define "L" in terms of T and V.
(8) Define isotropic harmonic oscillator.
(9) Write down zero point energy of 3-dimensional square well potential.
(10) What is $\left(\mathrm{A}^{+}\right)^{+}$?
(11) Write the values of $[\hat{x}, \hat{p}]$ and $[\hat{p}, \hat{x}]$
(12) Define unit operator $\hat{1}$ and projection operator $\hat{P a}$.

