Seat No. :

AB-115

April-2023

B.Sc., Sem.-VI

CC-307 : Mathematics (Abstract Algebra – II)

Time : 2:30 Hours]

Instruction : Right hand side figure indicates marks of that question.

- (A) Define characteristic of a ring. Prove that if p is the characteristic of an integral Domain D then (a + b)^p = a^p + b^p; a, b ∈ D.
 - (B) In the set of all integers Z, the operations ⊕ and ⊗ are defined by a ⊕ b = a + b 1 and a ⊗ b = a + b ab for all a, b ∈ Z then show that (Z, ⊕, ⊗) is a commutative ring with unity. Is an integral domain ? Is it a field ?

OR

- (A) Define an integral domain and prove that every finite integral domain is a field. 7
- (B) Show that the set $Z[i] = \{a + ib / a, b \in Z\}$ forms a ring with respect to usual addition and multiplication of complex numbers. Also show that the only elements of Z[i] have the multiplicative inverses are ± 1 , $\pm i$. Is it an Integral domain ? Is it a field ?
- 2. (A) State and prove the fundamental theorem on homomorphism for ring.
 - (B) Let R be the ring of all complex number and $R' = M_{2 \times 2}(R) = \begin{cases} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} / a, b \in R \end{cases}$ be a ring w.r.t usual addition and multiplication. Define $\phi : R \to R'$ by $\phi(a + ib) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$; $a + ib \in R$ then Verify whether ϕ is a homomorphism or not? Is it an Isomorphism? More over find the Kernel of ϕ .

OR

- (A) Define left ideal in a ring. Prove that the Kernel of a homomorphism in ring is an ideal.7
- (B) Obtain all ideals of the ring $(Z_{18}, +_{18}, \bullet_{18})$.

AB-115

7

7

7

7

P.T.O.

[Max. Marks : 70

(A) For non-zero polynomial f, $g \in D[x]$ then in usual notation prove that 3. [fg] = [f] + [g].(B) Define g.c.d. of two polynomials over a field F, Using Euclid's algorithm for the polynomials $f(x) = x^3 + 2x^2 + 3x + 2$ and $g(x) = x^2 + 4$ in $Z_5[x]$, then find g.c.d. of f(x) and g(x). Also express it into the form a(x)f(x)+b(x)g(x). OR (A) State and prove the division algorithm for polynomials. (B) Define irreducible polynomial, Also find all rational roots of an equation : $4x^5 + x^3 + x^2 - 3x + 1 = 0.$ 4. (A) Define Maximal Ideal. Prove that an ideal I in a commutative ring R with unity is a maximal ideal iff the quotient ring R/I is a field. (B) For an integral domain D and the field F, the mapping $\phi : D \to F$ defined by $\phi(a) = (a, 1)$: $\forall a \in D$ where $F = \{[a, b] / (a, b) \in S, b \neq 0\}$ then show that $D \cong F$. OR (A) Let R be a commutative ring with unity and I be an ideal of R, then prove that R/I is an integral domain iff 1 is a prime ideal. Prove that the polynomial $f(x) = 3x^2 + x + 4$ is a reducible over Z₇ and also show **(B)** that $f(x) = x^2 + x + 4$ is irreducible over Z_{11} . 14

7

7

7

7

7

7

7

7

5. Answer the following in short : (ANY SEVEN)

- Give an example of a division ring. (1)
- Is $(z_6, +_6, \bullet_6)$ integral domain ? Justify your answer. (2)
- (3) Give an example of ring without unity but its subring with unity.
- Define Kernel of a homomorphism. (4)
- If I = 4Z is an ideal of the ring $R = (Z, +, \bullet)$, then write down all the elements in (5) quotient ring R/I. Also, solve equation $(I + 2) \cdot X = I + 3$ for $X \in R/I$.
- Define principal ideal. (6)
- Find f+g and fg for two polynomial $f = (2, 3, -5, 0, 0, 0, ...) \in Z[x]$ and g = (1, 0, -2, 0, 0, 0, 0, 0)(7) $5, 0, 0, 0... \in Z[x].$
- Obtain the quotient q(x) and the remainder r(x) on $f(x) = x^3 + 1$ dividing by (8) $g(x) = x^2 + 3x - 5$ in R[x].
- (9) Define a primitive polynomial.
- (10) Define an extension field and give an example of it.
- (11) Find a polynomial with integer co-efficient that has 1/2 and -1/3 as zeroes.
- (12) Give an example of a prime ideal.