\qquad

AB-115

April-2023
B.Sc., Sem.-VI

CC-307 : Mathematics
(Abstract Algebra - II)
Time : 2:30 Hours]
[Max. Marks : 70
Instruction : Right hand side figure indicates marks of that question.

1. (A) Define characteristic of a ring. Prove that if p is the characteristic of an integral Domain D then $(a+b)^{p}=a^{p}+b^{p} ; a, b \in D$.
(B) In the set of all integers Z, the operations \oplus and \otimes are defined by $a \oplus b=a+b-1$ and $\mathrm{a} \otimes \mathrm{b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$ then show that $(\mathrm{Z}, \oplus, \otimes)$ is a commutative ring with unity. Is an integral domain? Is it a field?

OR

(A) Define an integral domain and prove that every finite integral domain is a field.
(B) Show that the set $Z[i]=\{a+i b / a, b \in Z\}$ forms a ring with respect to usual addition and multiplication of complex numbers. Also show that the only elements of $\mathrm{Z}[\mathrm{i}]$ have the multiplicative inverses are $\pm 1, \pm \mathrm{i}$. Is it an Integral domain? Is it a field?
2. (A) State and prove the fundamental theorem on homomorphism for ring.
(B) Let R be the ring of all complex number and $R^{\prime}=M_{2 \times 2}(R)=\left\{\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right] / a, b \in R\right\}$ be a ring w.r.t usual addition and multiplication. Define $\phi: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$ by $\phi(\mathrm{a}+\mathrm{ib})=$ $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right] ; a+i b \in R$ then Verify whether ϕ is a homomorphism or not ? Is it an Isomorphism? More over find the Kernel of ϕ.

OR

(A) Define left ideal in a ring. Prove that the Kernel of a homomorphism in ring is an ideal.
(B) Obtain all ideals of the ring $\left(\mathrm{Z}_{18},{ }_{18},{ }_{18}\right)$.
3. (A) For non-zero polynomial $\mathrm{f}, \mathrm{g} \in \mathrm{D}[x]$ then in usual notation prove that $[\mathrm{fg}]=[\mathrm{f}]+[\mathrm{g}]$.
(B) Define g.c.d. of two polynomials over a field F, Using Euclid's algorithm for the polynomials $\mathrm{f}(x)=x^{3}+2 x^{2}+3 x+2$ and $\mathrm{g}(x)=x^{2}+4$ in $Z_{5}[x]$, then find g.c.d. of $\mathrm{f}(x)$ and $\mathrm{g}(x)$. Also express it into the form $\mathrm{a}(x) \mathrm{f}(x)+\mathrm{b}(x) \mathrm{g}(x)$.

OR

(A) State and prove the division algorithm for polynomials.
(B) Define irreducible polynomial, Also find all rational roots of an equation :
$4 x^{5}+x^{3}+x^{2}-3 x+1=0$.
4. (A) Define Maximal Ideal. Prove that an ideal I in a commutative ring R with unity is a maximal ideal iff the quotient ring R / I is a field.
(B) For an integral domain D and the field F , the mapping $\phi: \mathrm{D} \rightarrow \mathrm{F}$ defined by $\phi(\mathrm{a})=(\mathrm{a}, 1): \forall \mathrm{a} \in \mathrm{D}$ where $\mathrm{F}=\{[\mathrm{a}, \mathrm{b}] /(\mathrm{a}, \mathrm{b}) \in \mathrm{S}, \mathrm{b} \neq 0\}$ then show that $\mathrm{D} \cong \mathrm{F}$.

OR

(A) Let R be a commutative ring with unity and I be an ideal of R , then prove that R / I is an integral domain iff 1 is a prime ideal.
(B) Prove that the polynomial $\mathrm{f}(x)=3 x^{2}+x+4$ is a reducible over Z_{7} and also show that $\mathrm{f}(x)=x^{2}+x+4$ is irreducible over Z_{11}.
5. Answer the following in short: (ANY SEVEN)
(1) Give an example of a division ring.
(2) Is $\left(\mathrm{z}_{6},{ }_{6},{ }_{6}\right)$ integral domain? Justify your answer.
(3) Give an example of ring without unity but its subring with unity.
(4) Define Kernel of a homomorphism.
(5) If $\mathrm{I}=4 \mathrm{Z}$ is an ideal of the ring $\mathrm{R}=(\mathrm{Z},+, \bullet)$, then write down all the elements in quotient ring R / I. Also, solve equation $(I+2) \cdot X=I+3$ for $X \in R / I$.
(6) Define principal ideal.
(7) Find $\mathrm{f}+\mathrm{g}$ and fg for two polynomial $\mathrm{f}=(2,3,-5,0,0,0 \ldots) \in \mathrm{Z}[x]$ and $\mathrm{g}=(1,0,-2$, $5,0,0,0 \ldots) \in Z[x]$.
(8) Obtain the quotient $\mathrm{q}(x)$ and the remainder $\mathrm{r}(x)$ on $\mathrm{f}(x)=x^{3}+1$ dividing by $\mathrm{g}(x)=x^{2}+3 x-5$ in $\mathrm{R}[x]$.
(9) Define a primitive polynomial.
(10) Define an extension field and give an example of it.
(11) Find a polynomial with integer co-efficient that has $1 / 2$ and $-1 / 3$ as zeroes.
(12) Give an example of a prime ideal.

