Seat No. : _____

AB-104

April-2023

BCA, Sem.-VI

CC-308 : Introduction to Data Mining & Data Warehouse

Time : 2:30 Hours]

[Max. Marks : 70

Instructions : (i) **All** questions in Section – I carry equal marks.

(ii) Question – **5** in Section – **II** is compulsory.

Section – I

AB-	104	1 P.	Т.О.					
	(\mathbf{A}) (\mathbf{B})	"Science and Engineering Area make the most use of data mining techniques" – Explain.						
	(A)	Explain a centroid based set-partitioning technique called K-Means in detail	7					
	(B)	Explain the use of Data mining applications in Financial Data Analysis area.	7					
4.	(A)	Draw a decision tree and explain with an example how it is used for classification.						
	(D)	technique.	7					
	(\mathbf{B})	noise. Explain in detail how singleton buckets / range buckets are used in Histogram	7 n					
	(A)	List out and explain Binning methods applied on sorted data values to remov	e _					
OR								
	(B)	Using an example, explain the steps of Apriori algorithm for mining frequitem-sets.						
3.	(A)	Which are the methods used to fill-in missing values for attributes in dat cleaning?	a 7					
	(B)	"Data cubes are n-dimensional." Explain it with 2-D, 3-D and 4-D data cubes.	7					
	(A)	OR Draw a proper diagram of a three tier Data warehousing architecture and explain.	7					
	(B)	H. Inmon ? Explain typical operations carried out in OLAP as multidimensional data model.	7 7					
2.	(A)	Which are the major features of a Data warehouse as defined by William	n					
	(B)	What is Data ? Using examples, explain its various types.	7					
	(A)	Explain how Frequent Patterns leads to Associations and Correlations withi data.	n 7					
		OR	1					
	(B)	Explain different Data mining technologies that are incorporated in variou	.s 7					
1.	(A)	Which are the major challenges that stimulates further improvement in Dat Mining ?	a 7					

		Section	– II				
Ansv	ver th	ne following MCQ's. : (Any Seve	en)		14		
(i)) process is helpful in retrieving data from database for analysis.						
	(A)	Data cleaning	(B)	Data integration			
	(C)	Data selection	(D)	Data transformation			
(ii)		sult of Clustering.					
	(A)	Class	(B)	Object			
	(C)	Instance	(D)	Dataset			
(iii)		can be sub-categorized as Ac	tive le	arning and supervised learning.			
	(A)	Passive learning	(B)	Machine learning			
	(C)	Unsupervised Learning	(D)	Semi-supervised Learning			
(iv)	Data	a cube has table, associate	ed to e	ach dimension of it.			
	(A)	Dimension table	(B)	Fact table			
	(C)	Association table	(D)	Cuboid table			
(v)		type of Data warehouse	prov	ides Information from a historical			
	pers	pective.					
	(A)	Non-volatile	(B)	Volatile			
	(C)	Time-variant	(D)	History-variant			
(vi)	In D	ata cube presentation, g	ives h	ighest level of summarization.			
	(A)	Base cuboid	(B)	Side cuboid			
	(C)	Top cuboid	(D)	Apex cuboid			
(vii)	Data	a quality is concerned with					
	(A)	Accuracy	(B)	Completeness			
	(C)	Timeliness	(D)	All of the above			
(viii)		rule of association technique	reflect	ts certainty of the rule.			
	(A)	Confidence	(B)	Support			
	(C)	Minimum-confidence	(D)	Minimum-support			
(ix)	x) To remove the non-frequent subset of items from item list, op						
	perf	ormed.					
	(A)	Prune	(B)	Delete			
	(C)	Remove	(D)	Outcast			
(x)	Which of the following predict categorical class labels ?						
	(A)	Test sets	(B)	Classifiers			
	(C)	Tuple sets	(D)	Overfit sets			
(xi)) step of classification process generates new data tuples as an output.						
	(A)	Learning	(B)	Supervised Learning			
	(C)	Classification	(D)	Clustering			
(xii)	xii) Loan payment prediction can be obtained through data mining of						
	(A)	Science and Engineering	(B)	Retail and Telecommunication			
	(C)	Intrusion Detection	(D)	Financial Data Analysis			

AB-104