2203E882

Candidate's Seat No :

Integ. M.Sc Sem-1 (Compu. Sci.) Examination

Mathematical Foundations

Time : 3-00 Hours]

March 2022

[Max. Marks : 70

Max. Marks: 70

Instructions: Draw Diagrams wherever necessary. Make Assumptions wherever necessary.

SECTION – I

- O-1 Evaluate the following terms: a. Find the value of x and y, if (2x-3, y+1) = (x+5, 7). b. $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. Find $(A \cup B) \times C$. c. Intercept of the line: $x^* \sec \alpha - y^* \csc \alpha = 5$. d. The slope of line to the positive direction of X-axis is 30° . e. If $f: R \rightarrow R$, f(x) = [x] then find f(2.5) and f(-2.5). f. Let $A = \{1, 2\}, B = \{3, 6\}$ and $f: A \rightarrow B$ given by $f(x) = x^2 + 2, g: A \rightarrow B$
 - , g(x) = 3x. Check whether f = g or not.
- Q-2 Attempt the following:
 - a. What the bit string represents the set of all integers that do not exceed 5? And write the string of the complement of this set? $(U = \{1, 2, 3, ..., 10\})$
 - b. Find the equation of line passing through the points (-2,4) and (1,2).
 - c. If $f: R \to R$ is bijective function given by $f(x) = x^3 + 3$, then find $f^{-1}(x)$.
 - d. Find the value of $\log_2 \left(\log_3 \left(\log_3 27^3 \right) \right)$.

OR

- Q-2 Attempt the following :
 - a. If $A = \{x \mid x \text{ is multiple of } 2 \le 10\}$ and $B = \{x \mid x \text{ is factor of } 12 \le 5\}$. Then prove one of the De morgan's law.
 - b. Find the area of triangle having sides 10 units, 12 units and 14 units.
 - c. Find angle between two lines x + 2y = 3 and 2x + 4y = 1.

d. If
$$\frac{1}{2}(\log_a x + \log_a y) = \log_a \left(\frac{x - y}{3}\right)$$
; then prove that $\frac{x}{y} + \frac{y}{x} = 11$.

P. T. O.

12

12

12

- Q-3 Attempt the following:
 - a. Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both, a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both, a two-wheeler and mobile phone and 10 had all three. How many candidates had none of the three? (5 marks)
 - b. Examine the continuity of function defined by, (6 marks)

$$f(x) = \begin{cases} -2x^2 & x \le 0\\ 5x+2 & 0 < x \le 1\\ 3x^2+4x & 1 < x \le 2 \end{cases}$$

at the points $x = 0, 1$.

Attempt the following:

Q-3

OR

- a. Prove that the triangle ABC is right angled triangle having points A(3,-1), B(6,2) and C(-2,4). (5 marks)
- b. If $f: R \to R$; f(x) = 2x+1 and $g: R \to R$; f(x) = 3x-2. Find fog, gof, fof and gog. (6 marks)

SECTION – II

Q-4 Evaluate the following examples.

a. Find the discontinuity of function $f(x) = \frac{x^2 + 1}{3x^2 - 17x - 20}$.

b.
$$\lim_{x \to 0} \left(\frac{1+x}{1-x}\right)^{\frac{1}{x}}.$$

c.
$$\frac{d}{dx} \left(e^x \cdot \log x\right)$$

d.
$$\frac{d}{dx} \left(7^{2x-1}\right)$$

e.
$$\int \left(\sec^2 x + x\right) dx$$

f.
$$\int \frac{2x-3}{x^2 - 3x + 78} dx$$

Q-5 Attempt the following:
a.
$$\lim_{x \to \infty} \frac{15x^3 - 3x^2 + 2}{20x^3 + 6x - 7}$$
b. If $y = e^x \sin x$, then prove that $\frac{d^2 y}{dx^2} - 2e^x \cos x = 0$
c. $y = \frac{2^x}{x^2}$ then find $\frac{dy}{dx}$.
d. $\int \log x \, dx$

11

11

12

12

Q-5 Attempt the following:

Q-6

a.
$$\lim_{x \to 0} \frac{7^{x} - 5^{x}}{x}$$

b. If $y = e^{\sin 3x}$, then find y_{2} .
c.
$$\int x e^{x} dx$$

d.
$$\int_{0}^{\pi/2} \sin x dx$$

Attempt the following:

a. $\lim_{x \to 2} \frac{x^5 - 32}{x^4 - 16}$ (5 marks)

b. Find the area bounded by
$$y = x^2 - x - 2$$
 with X-axis. (6 marks)

OR

a.
$$\int \frac{2}{x(x+2)(x+1)^2} dx$$
 (5 marks)

b. Find the maximum and minimum value of the function $y = x^3 - 3x + 5$. (6 marks) 12

11

11