Seat No. : _____

XQ-117

April-2013

B.C.A. (Sem. – II)

CC – 110 : Database Management System – I

[Max. Marks: 70

Instruction : Draw diagrams wherever required.

Time: 3 Hours]

1.	(a)	Explain database types by Number of users and Data Location.	4						
		OR							
		Define Data, Information, DBMS, Metadata.							
	(b)	Explain Hierarchical Model.	4						
		OR							
		Explain Network Model.							
	(c)	Short note on Database System Environment.	6						
		OR							
		Explain DBMS functions.							
		-							
2.	(a)	Explain Integrity rules with example.	4						
		OR							
		Define Table. Give its characteristics.							
	(b)	Explain Functional dependency and fully functional dependency with example.	4						
		OR							
		Define with example : Super Key, Primary key, Candidate Key and Secondary Key.							
	(c)	Explain Select, Product and Difference operator with example.	6						
		OR							
		Explain relationship in relational database with example.							
3.	(a)	Explain non-identifying relationship, derived attribute with example.	4						
	. /	OR							
		Explain identifying relationship, composite attribute with example.							
XQ-117		1 P.T.C							

(b) Explain Weak Entities, Ternary Relationship with example.

OR

Explain Recursive Relationship, Multivalued Attribute with example.

- (c) Draw ER diagram for the following business rules using Crow's foot notation : **6**
 - (1) A basketball Association organizes games between the teams.
 - (2) Each city in the country has one team as its representative.
 - (3) Each team has maximum 12 players and minimum 10 players.
 - (4) Each team has up to 3 coaches
 - (5) During the season each team plays 2 games against each of the other teams.

OR

Draw ER diagram for the following business rules using Crow's foot notation.

- (1) A patient can make many appointments with one or more doctors in the hospital. A doctor can accept many appointments. However each appointment is made with only one doctor and one patient.
- (2) If kept, an appointment converts in a visit. A visit results in diagnosis and appropriate treatment.
- (3) One diagnosis can have many medicines and a same medicine can be given for many diagnosis.
- (4) Medicines are given to patients according to diagnosis.
- (5) Each patient visit is billed by one doctor, and each doctor can bill many patients.
- 4. (a) Define Normalization. Explain need for normalization.

OR

Define and discuss the concept of transitive dependency.

(b) Explain 2NF and steps of conversion to 2NF with example.

OR

Explain 3NF and steps of conversion to 3NF with example.

(c) Normalize the data till 3NF and draw the dependency diagram :

	Roll_no	Name Book_id	Book_name	Category_id	Categ_Name	Issue_date	Return_dat
--	---------	--------------	-----------	-------------	------------	------------	------------

OR

4

4

4

6

Inv_No	Prod_No	Prod_Name	Sale_date	Vend_No	Vend_name	Qty	Price
1	P1	Fan	21/01/2013	1	Rakesh	10	1000
1	P2	Chair	21/01/2013	2	John	5	3000
1	P3	Table	21/01/2013	1	Rakesh	5	5000
2	P1	Fan	25/01/2013	1	Rakesh	6	1000
2	P3	Table	25/01/2013	1	Rakesh	3	5000
4	P4	Bench	2/2/2013	3	Mohan	3	7000

Normalize the date till 3N	F and draw	the dependency	diagram :
----------------------------	------------	----------------	-----------

5. Multiple Choice Questions :

(1) ______ exists when different version of same data appears at different place.

- (a) Data inconsistency (b) Data integration
- (c) Data security (d) None of the above

(2)	is a minimal super key.					
	(a)	Super key	(b)	Primary key		
	(c)	Secondary key	(d)	Candidate key		

(3) ______ attribute requires constant maintenance to ensure value is current.

- (a) Composite (b) Derived
- (c) Simple (d) Multivalued
- (4) Crow's Foot notation represent weak relationship by placing _____ line between entities.
 - (a) Solid (b) Dashed
 - (c) Double (d) None of the above
- (5) ______ join link tables by selecting all rows with common value in their common attribute of right table and all rows from left table.
 - (a) Left outer join (b) Right outer join
 - (c) Full outer join (d) Natural join

(6) _____ model lacked structural interdependence.

- (a) Hierarchical (b) Network
- (c) Relational (d) Both (a) and (b)

14

(7)	normal form have no partial dependency.				
	(a)	1NF	(b)	2NF	
	(c)	3NF	(d)	BCNF	
(8)		relationship can exists	betwe	en occurrences of the same entity set.	
	(a)	Recursive	(b)	Unary	
	(c)	Both (a) and (b)	(d)	None of the above	
(9)	Deri	ved attribute are sometimes re-	ferred	as attribute.	
	(a)	Computed	(b)	Simple	
	(c)	Multivalued	(d)	Calculative	
(10)		entity is used to imple	ement	M : N relationship between two or more	
	entit	ies.			
	(a)	Associative	(b)	Weak	
	(c)	Strong	(d)	All of the above	
(11)) is the set of possible values for a given attribute.				
	(a)	Entity	(b)	Relation	
	(c)	Field	(d)	Domain	
(12)	DBMS software doesn't support distributed database.				
	(a)	MySQL	(b)	MS SQL Server	
	(c)	Oracle	(d)	MS Access	
(13)) provide detailed description of all tables within database.				
	(a)	System catalog	(b)	Entity set	
	(c)	Data Dictionary	(d)	All of the above	
(14)) attribute cannot be divided further.			urther.	
	(a)	Single-valued	(b)	Multivalued	
	(c)	Composite	(d)	Simple	