Seat No. : \qquad

AC-105

April-2019

B.B.A., Sem.-II

CC-112 : Business Mathematics

Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) All questions are compulsory.
(2) Use of simple calculator is allowed.

1. (A) (1) Define the derivative of a function. Also state the rules of differentiation.
(2) Find the derivates of the following function with respect to x :
(i) $\mathrm{y}=\log \left[\mathrm{e}^{2 x} \cdot(2 x+1)^{-3}\right]$
(ii) $\mathrm{y}=\left(x^{4}+2 x^{2}+8\right)^{3 / 2}$
(iii) $\mathrm{y}=x^{15} \cdot \log x$.

OR
(1) If the demand function of a commodity is $\mathrm{P}=20-3 x$, find
(i) Marginal Revenue
(ii) Average Revenue
(2) If $y=\left(\frac{1+x}{1-x}\right)^{2}$ prove that $\left(1-x^{2}\right) \frac{\mathrm{dy}}{\mathrm{d} x}=4 \mathrm{y}$.
(B) Answer the following: (any four)
(1) If $\mathrm{f}(x)=x^{3}+3 x^{2}+1$ find $\mathrm{f}^{\prime}(1)$.
(2) Define elasticity of demand.
(3) If the cost function is $\left((x)=x^{3}+5 x^{2}+4 x+100\right)$. Find marginal cost.
(4) If elasticity of demand is 2 , give your comment.
(5) \qquad expressed elasticity of demand.
(6) When elasticity of supply is equal to 1 , the supply is said to be perfectly inelastic supply. (True/False)
2. (A) (1) If $y=e^{4 x}+e^{-4 x}$ prove that $\frac{d^{2} y}{d x^{2}}=16 y$.
(2) Find the maximum and minimum values of the following function $f(x)=2 x^{3}-6 x+7$.

OR

(1) Verify that $\frac{\partial^{2} u}{\partial x \cdot \partial y}=\frac{\partial^{2} u}{\partial y \cdot \partial x}$, when u is given by $u=x^{3} y+2 x^{2} y+x y^{3}$.
(2) The price P per unit at which a company can sell all that it produces is given by the function $\mathrm{P}=300-4 x$. The cost function is $\mathrm{C}(x)=500+28 x$ where x is the number of units produced. Find x so that the profit is maximum.
(B) Answer the following: (any four)
(1) If $\mathrm{y}=x^{3}-8 x^{2}+9$ find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$.
(2) Define utility.
(3) What is second order derivative?
(4) The budget equation $\mathrm{I}=$ \qquad .
\qquad is used to maximize utility under certain conditions.
(6) If $Z=3 x+8 y+10$ find $\frac{\partial z}{\partial x}$.
3. (A) (1) Define the following matrices with illustrations:
(i) Scalar matrix
(ii) Column matrix.
(iii) Inverse of a matrix
(2) If $\mathrm{A}=\left[\begin{array}{ll}4 & 1 \\ 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}0 & 2 \\ -1 & 0\end{array}\right]$ then verify that
(i) $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
(ii) $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \cdot \mathrm{A}^{\prime}$

OR

(1) Solve the following system of equations, using inverse of a matrix :

$$
\begin{aligned}
& x+y+z=3 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=6
\end{aligned}
$$

(2) If $A=\left[\begin{array}{ll}-5 & 2 \\ -6 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & -3 \\ 3 & -1\end{array}\right]$, then verify that $\operatorname{adj}(A B)=(\operatorname{adj} B)$ (adj A).
(B) Answer the following: (any three)
(1) If $|\mathrm{A}|=0, \mathrm{~A}^{-1}$ is possible. (True/False).
(2) If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ find A^{2}.
(3) Give one difference between matrix and determinant.
(4) ___ discovered matrices in the year 1980.
(5) If $A=\left[\begin{array}{ll}3 & 6 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}-2 & 3 \\ -1 & 1\end{array}\right]$ find $A-B$.
4. (A) (1) Aasha deposited ₹ 15,000 with a leasing company at 11% rate of compound interest. What amount will she receive at the end of 5 years ? How much interest will she get ? $\left[(1.11)^{5}=1.685058\right]$
(2) Find the present value of ₹ 2,000 p.a. for 14 years at 10% p.a. rate of interest. [(1.1) $\left.)^{-14}=0.2632\right]$.

OR

(1) Prove that in order that a sum of money may double itself in 10 years by investment at compound interest, payable annually, the rate of interest should be 7.2% approximately. [$\log 2=0.3010 ;$ Antilog $(0.0301)=1.072]$.
(2) If a sum of ₹ 5000 is deposited with a Shroff at the end of every year for 10 years at 15% compound rate of interest, find out the total amount of annuity at the end of 10 years. $\left[(1.15)^{10}=4.0456\right]$.
(B) Answer the following : (any three)
(1) Define Sinking Fund.
(2) At the end of $1^{\text {st }}$ year simple interest and compound interest are same. (True/False.)
(3) Find simple interest for ₹ 1,000 at 5% for 3 years.
(4) What is annuity?
(5) What is the amount of perpetual annuity of ₹ 60 at 6% compound interest per year?

