Seat No.:	

MP-132

March-2019

B.Sc., Sem.-VI

CC-310 : Chemistry (Analytical Chemistry)

Time: 2:30 Hours] [Max. Mar			70
સૂચના : જમણી બાજુ દર્શાવેલ અંક પ્રશ્નના ગુણ દર્શાવે છે.		જમણી બાજુ દર્શાવેલ અંક પ્રશ્નના ગુણ દર્શાવે છે.	
1.	(A)	ચોકસાઈ અને પુનઃનિર્મિતતા સમજાવો અને પુનઃનિર્મિતતા દર્શાવવાની કોઈપણ બે રીતો આપો. અકાર્બનિક વિશ્લેષણમાં 8–હાઇડ્રોક્સી ક્વિનોલીનું મહત્વ જણાવો. અથવા	
		 (1) નિર્ણાયક ક્ષતિઓ સમજાવો. નિર્ણાયક ક્ષતિઓ તમે કેવી રીતે ન્યૂનતમ બનાવશો ? (2) અકાર્બનિક પૃથક્કરણમાં કપફેરોનનો ઉપયોગ સમજાવો. 	7 7
	(B)	ગમે તે ચાર ના ટૂંકા જવાબ આપો. (1) ચોકસાઈની વ્યાખ્યા આપો. (2) વેરીયન્સને વ્યાખ્યાયિત કરો. (3) કપફેરોન વડે અવક્ષેપન હંમેશા ઠંડા દ્રાવણમાં કેમ કરવામાં આવે છે ? (4) Q-કસોટી શું છે ? (5) રીક્ત-અનુમાપન એટલે શું ? (6) પ્રમાણભૂત વિચલન (S) એટલે શું ?	4
2.	(A)	કેટાયન અને એનાયન એક્ષચેન્જ રેઝીન સમજાવો. આયન વિનિમય રેઝીન પર અસર કરતા પરીબળો સમજાવો, અને દ્રાવક નિષ્કર્ષણ માટે સૂત્ર તારવો. $\% \ E = \frac{100 \ D}{1+D} \text{જ્યાં} \% \ E = \ \text{પ્રતિશત નિષ્કર્ષણ} $ $D = \text{વિતરણ ગુણોત્તર} $ અથવા	14
		 (1) HPLC ની રચના દોરી તેનો સિદ્ધાંત અને ઉપયોગો લખો. (2) 100 ml જલીય દ્રાવણમાંથી એક દ્રાવ્ય પદાર્થના 92%નું નિષ્કર્ષણ બે વખત 50 ml કાર્બનિક દ્રાવકનો ઉપયોગ કરી થઈ શકે છે. દ્રાવ્યના વિસ્તરણ ગુણોત્તરની ગણતરી કરો. 	7 7
	(B)	ગમે તે ચાર ના ટૂંકમાં જવાબ આપો. (1) HPLC નું આખું નામ લખો. (2) ઈલ્યશનની વ્યાખ્યા આપો.	4

		(4) ધાતુ-ચીલેટ સામાન્ય રીતે કયા કાર્બનિક દ્રાવકમાં દ્રાવ્ય હોય છે ?	
		(5) $K = \frac{C_1}{C_2}$ આ સમીકરણમાં K, C_1 અને C_2 શું દર્શાવે છે ?	
		(6) TCD અને ECDનું આખું નામ લખો.	
3.	(A)	ડેડસ્ટોપ પોટેન્શીયોમેટ્રીક અનુમાપન સમજાવો અને પોલેરોગ્રાફીમાં નીચેના વીજપ્રવાહ સમજાવો.	14
		(1) ઉદ્દીપકીય વીજપ્રવાહ	
		(2) ગતિજ વીજપ્રવાહ	
		(3) સિમિત વીજપ્રવાહ	
		અથવા	
		(1) અર્ધતરંગ પોટેન્શિયલ $(E_{1/2})$ સમજાવો અને ક્વિનહાઈડ્રોન ઈલેક્ટ્રોડના ફાયદા અને ગેરફાયદા જણાવો.	7
		(2) પોલેરોગ્રાફીમાં અવશેષી વિજપ્રવાહની ઉત્પત્તિ સમજાવો અને પોલેરોગ્રાફી પદ્ધતિમાં સહાયક	,
		વિદ્યુતવિભાજ્યનું કાર્ય સમજાવો.	7
	(B)	ગમે તે ત્ર ણ ના ટ્રંકમાં જવાબ આપો.	3
	(D)	(1) સંદર્ભ ઈલેક્ટ્રોડ એટલે શું ?	J
		(2) ઈલ્કોવીક સમીકરણ લખો.	
		(3) પોલેરોગ્રાફીમાં વપરાતા ત્રણ ઈલેક્ટ્રોડના નામ આપો.	
		(4) જુદા-જુદા આયન સીલેક્ટીવ ઈલેક્ટ્રોડના નામ આપો.	
		(5) E.M.F. નું આખુ નામ આપો.	
4.	(A)	$\mathrm{H_{3}PO_{4}}$ અને NaOH સાથેનું અનુમાપન સમજાવો અને ધાતુઓ રિડક્શનકર્તા તરીકે સવિસ્તર નોંધ	
		લખો, EDTA વડે પાણીની કઠિનતા નક્કી કરવાની પદ્ધતિ સમજાવો.	14
		અથવા	
		(1) એસિડ-બેઈજ સૂચકો પર નોંધ લખો.	7
		(2) આલ્કલીના વિકલનીય અનુમાપન દ્વારા તમે કેવી રીતે જાણશો કે આલ્કલીનો આપેલ નમૂનો	7
		(i) NaOH + Na ₂ CO ₃ ધરાવે છે ?	
		(ii) NaHCO ₃ + Na ₂ CO ₃ ધરાવે છે ?	
		(iii) ફક્ત Na ₂ CO ₃ ધરાવે છે ?	
	(B)	ગમે તે ત્ર <mark>ેણ</mark> ના ટૂંકમાં જવાબ આપો.	3
	· /	(1) Ca-EDTA સંકીર્ણ સંયોજનનું બંધારણીય સૂત્ર લખો.	
		(2) H_3PO_4 ના અનુમાપનમાં $CaCl_2$ કેમ ઉમેરવામાં આવે છે ?	
		(3) આયોડીમેટ્રી અનુમાપન એટલે શું ?	
		(4) મિથાઈલ ઓરેન્જ સૂચકની pH-વિસ્તાર (રેન્જ) જણાવો.	
		(5) ડિમાર્સ્કીંગ એજન્ટ વ્યાખ્યાયિત કરો.	

MP-132 2

(3) ધારણકદને વ્યાખ્યાયિત કરો.

Seat No.:	
-----------	--

7

7

MP-132

March-2019 B.Sc., Sem.-VI

CC-310 : Chemistry

(Analytical Chemistry)

Time: 2:30 Hours]

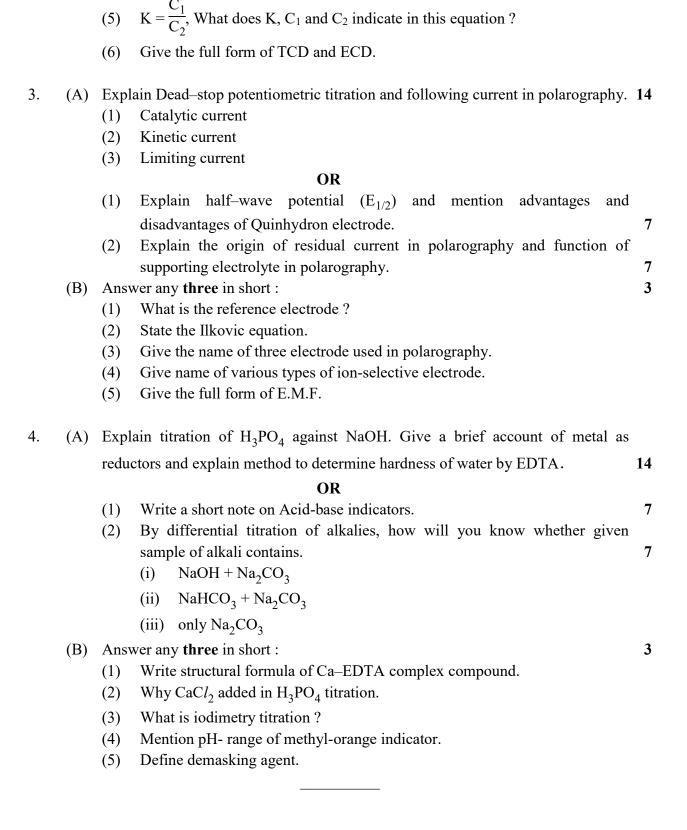
[Max. Marks: 70]

Instruction: Figure to the right indicate marks of the questions.

1. (A) Explain accuracy and precision, give two ways of expressing accuracy and precision and mention the importance of 8 – Hydroxy quinoline in inorganic analysis.

OR

(1) Explain determination errors? How will you minimize the determination


- errors.
- (2) Mention the uses of cupferron in inorganic analysis. 7
- (B) Answer any **four** in short:
 - (1) Give the definition of accuracy.
 - (2) Define variance.
 - (3) Why the precipitation by cupferron always carried out in cold solution.(4) What is Q-Test?
 - (5) What is the meaning of Blank analysis?
 - (6) Define Standard Deviation (S).
- 2. (A) Explain difference between cation and anion exchange resins. Mention factors that affect the selectivity of ion-exchange resins and derive the following for solvents extraction.

%
$$E = \frac{100 \text{ D}}{D+1}$$
 where % $E =$ percentage extraction

D = distribution ratio

OR

- (1) Write a principle of HPLC and its application. Draw a fig. of HPLC.
- (2) From the 100 ml aqueous solution 92% extraction of solute is done two times using 50 ml organic solvent. Calculate the distribution ratio of solute. 7
- (B) Answer any **four** in short:
 - (1) Give the full form of HPLC.
 - (2) Define Elusion.
 - (3) Define Retention time.
 - (4) Metal chelates are usually soluble in which organic solvents.

MP-132 4