\qquad

MO-128

March-2019
B.Sc., Sem.-VI

CC-309 : Mathematics

Time : 2:30 Hours]
[Max. Marks : 70
Instructions : (1) All questions are compulsory.
(2) Right hand side figure indicates marks of that question.

1. (A) (i) Let X be a metric space. Prove that A subset G of X is open if and only if it is a union of open spheres.
(ii) Prove that in any metric space X , each open sphere is an open set.

OR
(i) Define close set. Let X be a metric space. A subset F of X is closed if and only if its complement F^{\prime} is open.
(ii) Let X be a complete metric space and let Y be a subspace of X . Prove that Y is complete if and only if it is closed.
(B) Attempt any two short questions :
(1) Is the real function $|x|$ defined on real line R is metric ? Justify.
(2) Define metric space.
(3) Define interior of A. Give any two basic properties of $\operatorname{Int}(\mathrm{A})$.
2. (A) (i) Prove that closed subset of a compact sets are compact.
(ii) Prove that a compact subset of a metric space are closed.

OR

(i) A subset E of a real line R^{1} is connected if and only if it has following property : "If $x \in \mathrm{E}, \mathrm{y} \in \mathrm{E}$ and $x<\mathrm{z}<\mathrm{y}$ then $\mathrm{Z}_{0} \in \mathrm{E}$ ".
(ii) A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
(B) Attempt any two short questions :
(1) Define compact metric space.
(2) Define complete metric space.
(3) Define bounded mapping.
3. (A) (i) State and prove Weierstrass M-test. Show that $\mathrm{f}_{\mathrm{n}}(x)=\mathrm{n}^{2} x^{\mathrm{n}}(1-x) ; x \in[0,1]$ does not converges uniformly to a function which is continuous on [0,1]. 7
(ii) Let f_{n} satisfy
(1) $f_{n} \in D[a, b]$
(2) $\left(\mathrm{f}_{\mathrm{n}}\left(x_{0}\right)\right)$ converges for $x_{0} \in \mathrm{D}[\mathrm{a}, \mathrm{b}]$
(3) f_{n} converges uniformly on $[a, b]$ then prove that f_{n} converges uniformly on $[a, b]$ to a function f.

OR

(i) Let (f_{n}) be a sequence of continuous function on $E \subset C$ converges uniformly to f on E then prove that f is continuous on E.
(ii) Prove that there exists a function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ which is continuous everywhere but differentiable nowhere.
(B) Attempt any two short questions :
(1) Is $\mathrm{f}_{\mathrm{n}}(x)=\frac{1}{1+\mathrm{n} x}(x \geq 0)$ point wise convergent? justify.
(2) If the series $\sum \mathrm{a}_{\mathrm{k}}$ converges absolutely then prove that the series $\sum \mathrm{a}_{\mathrm{k}} \cos (\mathrm{k} x)$ is uniformly convergent on R .
(3) Define Uniform convergence.
4. (A) (i) Let $\mathrm{f}(x)=\sum \mathrm{a}_{\mathrm{n}} x^{\mathrm{n}}$ be a power series with radius of convergence 1 . If the series converges at 1 then prove that $\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\mathrm{f}(1)$
(ii) State and prove Weierstrass Approximation theorem.

OR

(i) For every $x \in \mathrm{R}$, and $\mathrm{n}>0$, prove that

$$
\sum_{\mathrm{k}=0}^{\mathrm{n}}(\mathrm{n} x-\mathrm{k})^{2}\binom{\mathrm{n}}{\mathrm{k}} x^{\mathrm{k}}(1-x)^{\mathrm{n}-\mathrm{k}}=\mathrm{n} x(1-x) \leq \frac{\mathrm{n}}{4}
$$

(ii) Show that for $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$ for $-1 \leq x \leq 1$. Hence deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots \ldots$
(B) Attempt any two short questions :
(1) Show that $\log 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \ldots$
(2) State Binomial series for $\alpha \in \mathrm{R}$ and $|x|<1$.
(3) Define Taylor's series.

