Seat No. : \qquad

MN-139
 March-2019
 B.Sc., Sem.-VI
 CC-308 : Physics
 (New)

Time : 2:30 Hours]
[Max. Marks : 70
સૂચના : સંજ્ઞાઓ તેમના પ્રચલિત અર્થ ધરાવે છે.

1. (a) (1) "બે પ૨માણું ધરાવતા આણુના ઈલેક્ટ્રોનિક બેન્ડ્સના કંપનવિષયક વિશ્લેષણ" પ૨ નોંધ લખો. 7
(2) ઈલેક્ટ્રોનિક વર્ણપટની ૨ચનાની ચર્ચા કરો. 7

અથવા
(1) ઈલેક્ટ્રોનિક વર્ણપટના પરિભમણ માળખાંને ધ્યાનમાં ૨ાખીને Q-શાખા માટેનું સમીકરણ મેળવો.
(2) ફાન્ક-કોન્ડોન સિદ્ધાંત દ્વારા બેન્ડ સિસ્ટમ્સમાં જોવા મળતી કંપનશીલ તીવ્રતાના વિતરણને સમજાવો.
(b) છમાંથી કોઈૅપણ ચા૨ લખો :
(1) તરંગ સંખ્યાની વ્યાખ્યા આપીને તેનો એકમ લખો.
(2) ફાન્ક-કોન્ડોન સિદ્વાંત લખો.
(3) એક જ તત્ત્વ ધરાવતાં આણુઓમાં દ્વિધ્રુવી ચાકમાત્રાનું સરેરાશ મૂલ્ય લખો.
(4) O_{2} આણુ માટે શોષણ બેન્ડમાં તીવ્રતા વિત૨ણ દર્શાવતી ફાન્ક-કોન્ડોન સિદ્વાંત દ્વારા મળતી આકૃતિ દોરો.
(5) I_{2} આણુ માટે શોષણ બેન્ડમાં તીવ્રતા વિત૨ણ દર્શાવતી ફ્રાન્ક-કોન્ડોન સિદ્ધાંત દ્વા૨ા મળતી આકૃતિ દોરો.
(6) I_{2} આણુના કંપનશીલ સ્તરો ખૂબ નજીક કેમ હોય છે ?
2. (a) (1) વિકલિત પ્રકીર્ણા આડછેદની વ્યાખ્યા આપો અને તેનાં માટે નીચેનું સમીકરણ મેળવો :

$$
\sigma(\Omega)=-\frac{\mathrm{b}}{\sin \theta} \frac{\mathrm{db}}{\mathrm{~d} \theta}
$$

(2) વાયુ માટેનો સ્નીગ્યતાનો ગુણાંક નીચે પ્રમાણે મેળવો :

$$
\eta=\frac{1}{3} \rho\left\langle u_{z}\right\rangle l
$$

અથવા

ઉઠ્મિય ઉત્સર્જન સમજાવો અને ઉઠ્્મિય ઉતત્સર્જન માટે રિચાર્ડસન-દુશમન સમીક૨ણ મેળવો.
(b) છમાંથી કોઈઈપણ ચાર લબો :
(1) લોરેન્ઝ નંબર શુંછે ? તેના માટેનું સમીકરણ લખો.
(2) બ્રાઉનિયન ગતતની વ્યાખ્યા લખો.
(3) ફોટોઈલેક્ટ્રિક અસરની વ્યાળ્યા લખો.
(4) જ્યારે વાયુમાં તાપમાન વધે ત્યારે સ્નીગ્ધતાના ગુણાંક ઉપ૨ શું અસર થશે?
(5) ફિકના નિયમનું સમીક૨ણ લખો.
(6) વિદ્યુત વાહકતા જેના પ૨ આધા૨ ૨ાખે છે તે પરિબળોના નામ લખો.
3. (a) ઈલેક્ર્રોનિક ધ્રુવીક૨ણના સિદ્વાંત પ૨ ચર્ચા કરી નીચેનું સમીકરણ મેળવો :

$$
\epsilon_{\mathrm{s}}=1+\frac{\mathrm{N}_{\mathrm{e}} \mathrm{e}^{2}}{\mathrm{~m} \epsilon_{0} \omega_{0}^{2}-\frac{1}{3} \mathrm{Ne}_{\mathrm{e}} \mathrm{e}^{2}}
$$

અથવા

દ્વિધ્રૃવ અભિગમમના ધ્રૃવીક૨ણા વિશે આવશ્યક સમીકરણો સાથે વિગતવાર લખો. પૂર્વાભિમુખીકરણ ધ્રૃવીક૨ણા અને અન્ય પ્રકારનાં ધ્રૃવીકરણ વચ્ચેના તફાવત સમજાવો.
(b) પાંચમાંથી કોઈீપણ ત્રણ લખો :
(1) વિદ્યુત સ્થાનાંતર સEિશ વ્યાખ્યાયિત કરો.
(2) વિદ્યુત સંવેદનશીલતાને વ્યાખ્યાયિત કરો.
(3) SI અને CGS પદ્ધતિમાં ધ્રૃવીકરણ ક્ષમતાને દર્શાવતું સમીક૨ણ લખો.
(4) સ્થૂળ ડાઈઈઈલેક્ટ્રિક અચળાંકને વ્યાખ્યાયિત કરો.
(5) પ્લાઝમા આવૃત્તિનું સમીકરણ લખ.
4. (a) લેંગ્વીનનો ડાયામેગ્નેનેટિઝમમનો વાદ જ३ફી આકૃતિ દોશી સમજાવો અને $\chi=-\frac{\mu_{0} \mathrm{NZe}^{2}}{6 \mathrm{~m}}\left\langle\mathrm{r}^{2}\right\rangle$ સમીક૨ણ મેળવો.

અथવા
લેંગ્વીનનો પેરામેમ્નેટિઝમનો પ્રશિષ્ટ વાદ સમજાવો અને ક્યુરીનો નિયમ તારવો.
(b) પાંચમાંથી કોઈૅપણ ત્રણ લખો :
(1) ચુંબકીય સંવેદનશીલતાને વ્યાખ્યાયિત કરે. તેની નિશાની પ૨થી કયા પ્રકા૨ની માહિતી મેળવી શકાય છે ?
(2) હુંડનો ત્રીજો નિયમ લખો.
(3) પાઉલીના પેરામેગ્મેટીઝમને વ્યાખ્યાયિત કરો.
(4) ચુંબકીય અનુના કેવી ૨ીતે મેળવી શકાય છે ?
(5) ESRનું સંપૂર્ણ નામ લખો.
\qquad

MN-139

March-2019

B.Sc., Sem.-VI
CC-308: Physics
(New)

Time : 2:30 Hours]
[Max. Marks : 70

Instruction : Symbols have their usual meanings.

1. (a) (1) Write a note on "vibrational analysis of the electronic bands of a diatomic molecule".
(2) Explain formation of electronic spectra.

OR
(1) Considering the rotational structure of electronic spectra, obtain the Q branch equation.
(2) Explain the observed vibrational intensity distribution in band systems by Franck-Condon principle.
(b) Any four out of six.
(1) Define wave number and hence give its unit.
(2) Write the Franck-Condon principle.
(3) Give the average value of the dipole moment in homo-nuclear molecules.
(4) Draw the intensity distribution in absorption bands from Franck-Condon principle for O_{2} molecule.
(5) Draw the intensity distribution in absorption bands from Franck-Condon principle for I_{2} molecule.
(6) Why I_{2} molecule has much closer vibrational levels?
2. (a) (1) Define differential scattering cross section and derive the equation for it as under.

$$
\sigma(\Omega)=-\frac{\mathrm{b}}{\sin \theta} \frac{\mathrm{db}}{\mathrm{~d} \theta}
$$

(2) Derive the coefficient of viscosity of the gas as under :

$$
\begin{gathered}
\eta=\frac{1}{3} \rho\left\langle u_{z}\right\rangle l \\
\text { OR }
\end{gathered}
$$

Explain thermionic emission and derive Richardson-Dushman equation for thermionic emission.
(b) Any four out of six.
(1) What is Lorenz number? Write the equation for it.
(2) Define Brownian motion.
(3) Define Photoelectric effect.
(4) What will happen to coefficient of viscosity η when temperature increases in gas?
(5) Write the equation of Fick's law.
(6) Write the factors on which electrical conductivity depends.
3. (a) Discuss the theory of electronic polarizability and obtain the expression for it as follows :

$$
\epsilon_{\mathrm{s}}=1+\frac{\mathrm{N}_{\mathrm{e}} \mathrm{e}^{2}}{\substack{\mathrm{~m} \in_{0} \omega_{0}^{2}-\frac{1}{3} \mathrm{~N}_{\mathrm{e}} \mathrm{e}^{2} \\ \text { OR }}}
$$

Write in detail about polarization of dipole orientation with necessary equations. Explain the differences between orientational polarization and other types of polarization.
(b) Any three out of five.
(1) Define electric displacement vector.
(2) Define electric susceptibility.
(3) Write the connecting relation of polarizability in terms of SI and CGS system.
(4) Define macroscopic dielectric constant.
(5) Write the equation of plasma frequency.
4. (a) Explain Langevin's theory of diamagnetism with necessary figure and derive.

$$
\chi=-\frac{\mu_{0} \mathrm{NZe}^{2}}{6 \mathrm{~m}}\left\langle\mathrm{r}^{2}\right\rangle
$$

OR
Explain Langevin's classical theory of paramagnetism and derive Curie law.
(b) Any three out of five.
(1) Define Magnetic susceptibility. Which type of information can we get from its sign?
(2) Write third rule of Hund's.
(3) Define Pauli paramagnetism.
(4) How can we get magnetic resonance ?
(5) Write full form of ESR.

