Seat No. : \qquad

MN-144

March-2019
B.Sc., Sem.-VI

CC-308: Chemistry
(Inorganic)
Time : 2:30 Hours]
[Max. Marks : 70

1. (A) નીચે દર્શાવેલ પદો માટે ટર્મ સંજ્ઞાઓ મેળવો :
(a) $\mathrm{F}^{-1}(\mathrm{z}=9)$
(b) $\mathrm{Ti}^{+3}(\mathrm{z}=22)$
(c) $\mathrm{N}(\mathrm{z}=7)$
(d) $\mathrm{S}(\mathrm{z}=16)$

અથવા

(i) $\mathrm{d}^{2}-\mathrm{d}^{8}$ રચના માટે ઓર્ગલ આલેખ સમજાવો.
(ii) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ નો શોષણ વર્ણપપટ સમજાવો.
(B) નીચેના પ્રશ્નોના એક વાક્યમાં જવાબ લખો : (કોઈૅપણ ચા૨)
(1) સ્પીન ગુણાંક અને અયુગ્મિત ઈલેક્ટ્રોનની સંખ્યા વચ્ચેનો સંબંધ દર્શાવો.
(2) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ સંકિર્ણ શાથી આછો ગુલાબી રંગ ધરાવે છે ?
(3) $2 p$ ટર્મ સંજ્ઞામાં ‘ 2 ' શું દર્શાવે છે ?
(4) હિલીયમ પ૨માણુ (He) ની નિમ્નતમ ઉત્તેજીત અવસ્થા માટેની ટર્મ સંજ્ઞા કઈ હશે ?
(5) d-d વર્ણપપટ શાથી અતિ દુર્બળ અને અસંમતિય હોય છે ?
(6) d-કક્ષકોના વિભાજનમાં કયા પરિબળો અસ૨ કરે છે ?
2. (A) ઘન પેટીમાં ગતિ કરતાં ઈલેક્ટ્રોન માટે શ્રોડિંજ૨ સમીકરણ લખો. ચલ અલગીકરણ પ્રયુક્તિ વાપરી ત્રણ ચલિતયુક્ત સમીકરણમાંથી ત્રણ એક ચલિતયુક્ત સમીકરણો મેળવો. આ પ્રણાલિના આયગન મૂલ્યની ચર્ચા કરો.

અથવા

(i) કારકનો હ૨મિશીયન ગુણધર્મ સમજાવો. સાબિત કરો કે હ૨મિશીયન કા૨કના વિભિન્ન આયગન મૂલ્યો ધરાવતા આયગન ફલનો ઓર્થોગોનલ હોય છે.
(ii) દढ़-ઘૂર્ણાંક માટે સમાનિકૃત તરંગ ફલન અને શક્તિનું મૂલ્ય મેળવો.
(B) નીચેનામાંથી કોઈપપણ ચાર પ્રશ્નોના જવાબ એક વાક્યમાં આપો :
(1) ગમે તે એક હરમિશીયન કારકનું ઉદાહ૨ણ આપો.
(2) Ф-સમીક૨ણ આપો.
(3) ઘન પેટીમાં ૨હેલા કણ માટે શૂન્યબિંદુ શક્તિનું મૂલ્ય દર્શાવો.
(4) ધ્રૃવીય યામ એટલે શું ?
(5) સમાનીક૨ણ શા માટે ક૨વામાં આવે છે ?
(6) જડ ભ્રામક પ્રણાલિનો કોઈૅપણ એક ઉપયોગ લખો.
3. (A) ચલ પ્રમેય સમજાવો અને નીચેનું સેક્યુલ૨ સમીકરણ ઉપજાવો :

$$
\left.\begin{array}{cc}
\mathrm{H}_{11}-\mathrm{ES}_{11} & \mathrm{H}_{12}-\mathrm{ES}_{12} \\
\mathrm{H}_{21}-\mathrm{ES}_{21} & \mathrm{H}_{22}-\mathrm{ES}_{22}
\end{array}\right]=0
$$

(i) સંક૨ણ એટલે શું ? sp^{2} સંકૃત કક્ષક માટે તરંગવિધેય ઉપજાવો તેમજ બંધકોણ અને સાપેક્ષ શક્તિનું મૂલ્ય ગણો.
(ii) ઇથીલીન આણુ માટે સાદો હ્યુકેલનો સિદ્ધાંત સમજાવો. 7
(B) નીચેનામાંથી કોઈૅપણ ત્રણ પ્રશ્નોના એક વાક્યમાં જવાબ લખો :
(1) H_{11} શું छર્શાવે છे ?
(2) 'sp' સંકૃત કક્ષકો વચ્ચેનો બંધ કોણા આપો.
(3) ચલ પ્રમેયનો ઉપયોગ દર્શાવો.
(4) ‘ઓવરલેપ ઈન્ટિગ્રલ’ એટલે શું ?
(5) એલાયલ કાર્બ-કેટાયનમાં π-ઈલેક્ટ્રોનની સંખ્યા લખો.
4. (A) ધાતુ-કાર્બોનિલ સંયોજનોના બંધારણ નક્કી ક૨વા માટે IR વર્ણપપટની ઉપયોગિતા ઉદાહ૨ણ સહિત સમજાવો.

અથવા

(i) $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ અને $\mathrm{Co}(\mathrm{CO})_{3} \mathrm{NO}$ ના આધુનિક કક્ષક આલેખ દોરો. 7
(ii) કાર્બ-ધાત્વિય સંયોજનોની વ્યાખ્યા આપી તેઓનું વર્ગીકરણ કરો.
(B) નીચેનામાંથી કોઈૅપણ ત્રણ પ્રશ્નોના એક વાક્યમાં જવાબ લખો :
(1) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}$ કાર્બ-ધાત્વિય સંયોજન છે શા માટે ?
(2) $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ માં કેટલા બ્રીજ કાર્બોનિલ છે ?
(3) $d \pi-p \pi$ પ્રકારનો બંધ ક્યારે શક્ય બને છે ?
(4) અસ૨કા૨ક પ૨માણુ ક્રમાંક એટલે શું ?
(5) $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}$ નું બંધા૨ણ होरो.
\qquad

MN-144

March-2019

B.Sc., Sem.-VI
 CC-308 : Chemistry
 (Inorganic)

Time : 2:30 Hours]
[Max. Marks : 70

1. (A) Derive term symbol for the following :
(a) $\mathrm{F}^{-1}(\mathrm{z}=9)$
(b) $\mathrm{Ti}^{+3}(\mathrm{z}=22)$
(c) $\mathrm{N}(\mathrm{z}=7)$
(d) $\mathrm{S}(\mathrm{z}=16)$

OR

(i) Explain Orgel diagram for $\mathrm{d}^{2}-\mathrm{d}^{8}$ configuration.
(ii) Explain the absorption spectrum of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$.
(B) Answer the following in one word or a sentence (any four):
(1) What is the relationship between spin multiplicity and number of unpaired electrons?
(2) Why does $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ gives light pink colour?
(3) What does ' 2 ' indicates in the term symbol 2 p ?
(4) What will be the term symbol for the lowest excited state of the helium atom (He) ?
(5) Why the d-d spectra is very weak and unsymmetrical ?
(6) Which factors affects the splitting of d-orbitals?
2. (A) Write Schrodinger equation for an electron in a cubical box. Use the technique of separation of variable to separate it into three one variable equations. Discuss the eigen value of this system.

OR

(i) Explain hermitian property of an operator. Prove that eigen functions belonging to different eigen values of hermitian operator are orthogonal.
(ii) Obtain the normalized wave function and the value of energy for the rigid rotator.
(B) Answer the following questions in a sentence only (any four).
(1) Give any one example of hermitian operator.
(2) Write the Φ-equation.
(3) Give the zero point energy of an electron moving in a cubical box.
(4) What are polar co-ordinates?
(5) Why do we normalize a function?
(6) Give any one application of the rigid rotator model.
3. (A) Explain the variation principle and obtain the following secular equation :
$\left[\begin{array}{ll}H_{11}-E S_{11} & H_{12}-E S_{12} \\ H_{21}-E S_{21} & H_{22}-E S_{22}\end{array}\right]=0$
OR
(i) What is hybridization? Obtain the wave function for sp^{2} hybrid orbtial and calculate bond angle and its relative energy.
(ii) Explain the Huckel theory for ethylene molecule. 7
(B) Answer any three of the following questions in one sentence. 3
(1) What does H_{11} indicates ?
(2) Give the bond angle between 'sp' hybrid orbitals.
(3) Write the use of variation principle.
(4) What is 'overlap integral'?
(5) Write the no. of π-electrons in allylic carb-cation.
4. (A) Discuss the application of IR spectra in the determination of structures of metal carbonyls by taking suitable examples.

OR

(i) Draw the recent orbital diagrams of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and $\mathrm{Co}(\mathrm{CO})_{3} \mathrm{NO}$.
(ii) Define the term organo-metallic compounds and give their classification.
(B) Answer any three of the following questions in one sentence.
(1) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}$ is an organometallic compound. Why?
(2) How many bridge carbonyl groups are there in $\mathrm{Co}_{2}(\mathrm{CO})_{8}$?
(3) When is the $\mathrm{d} \pi-\mathrm{p} \pi$ bond possible?
(4) What is effective atomic number?
(5) Draw the structure of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}$.

