Seat No. : _____

MM-119

March-2019

B.Sc., Sem.-VI

307 : Physics

(Mathematical Physics, Classical Mechanics & Quantum Mechanics)

Time : 2:30 Hours]

[Max. Marks : 70

- **સૂચના :** (1) **બધા** જ પ્રશ્નોના જવાબ આપો.
 - (2) સંજ્ઞાઓના અર્થ પ્રચલિત પ્રણાલિકા મુજબ છે.
- 1. (A) નીચેના પ્રશ્નો લખો :
 - (1) જો v પૂર્ણાંક ન હોય તો દર્શાવો કે W $[J_v(x), J_{-v}(x)] = \frac{-2 \sin \pi v}{\pi x}$. 7
 - (2) બેસલ વિધેયો નીચેના લંબ છેદકીય (Orthogonality) સંબંધ સંતોષે છે તેમ સાબિત કરો : 7

$$\int_{0}^{a} J_{\nu} \left(\alpha_{\nu m} \frac{\rho}{a} \right) J_{\nu} \left(\alpha_{\nu n} \frac{\rho}{a} \right) \rho d\rho = 0, \ m \neq n \text{ even}$$
$$\int_{0}^{a} J_{\nu} \left(\alpha_{\nu m} \frac{\rho}{a} \right) J_{\nu} \left(\alpha_{\nu n} \frac{\rho}{a} \right) \rho d\rho = \frac{a^{2}}{2} \left[J_{\nu}' (\alpha_{\nu n}) \right]^{2} m = n$$

અથવા

(i)
$$x J'_{n} = n J_{n} - x J_{n+1}$$

(ii)
$$x J'_{n} = x J_{n-1} - n J_{n}$$

(2) દર્શાવો કે
$$J_{n+3} + J_{n+5} = \frac{2}{x}(n+4) J_{n+4}$$

MM-119

- (B) ટૂંકમાં જવાબ આપો : (છમાંથી કોઈપણ ચાર)

 - (3) લીજેન્દ્રનું વિકલ સમીકરણ લખો.
 - (4) ન્યૂમેન વિધેય વ્યાખ્યાયિત કરો.
 - (5) બેસલનું વિકલ સમીકરણ લખો.
 - (6) લીજેન્દ્ર બહુપદી $P_4(x)$ નું મૂલ્ય લખો.
- 2. (A) નીચેના પ્રશ્નો લખો :
 - (1) δ સંકેત નો ઉપયોગ કરીને ઓઈલર-લાંગ્રાન્જના ગતિના સમીકરણ મેળવો. 7

4

4

 (2) વિદ્યુતયાંત્રિક સરખામણીને આધારે L-C-R શ્રેણી પરિપથ અને L-C-R સમાંતર પરિપથ માટેનાં લાંગ્રાન્જીયન મેળવો.

અથવા

- (1) જીઓડેસીક સમજાવો. ગોલીય સપાટીના જીઓડેસીસ ગુરૂ વર્તુળો છે તેમ દર્શાવો.
- (2) ગતિશીલ આધાર સાથે સરળ આવર્તક દોલકના તંત્ર માટેના હેમિલ્ટોનીયન મેળવો.
- (B) ટૂંકમાં જવાબ આપો : (છમાંથી કોઈપણ ચાર)
 - (1) હેમિલ્ટોનિયનનો સિદ્ધાંત લખો.
 - (2) પ્રવસ્થા અવકોટા એટલે શું ?
 - (3) એક પારિમાણિક સરળ આવર્તક દોલકના પ્રવસ્થા માર્ગના ઢાળનું મૂલ્ય લખો.
 - (4) જો L સમય પર આધારિત ન હોય તો $\frac{dH}{dt} =$ _____.
 - (5) ઓઈલર-લાગ્રાન્જીયન સમીકરણ લખો.
 - (6) સાદું લોલક એટલે શું ?

MM-119

- 3. (A) નીચેના પ્રશ્નો લખો :
 - (1) ત્રિ-પરિમાણિક સ્થિતિમાન કૂપના અંદરના ભાગમાં શ્રોડીન્જર સમીકરણનો ઉકેલ શોધો. 7

(2)
$$\rho \frac{d^2 L}{d\rho^2} + [2(e+1) - \rho] \frac{dL}{d\rho} + [\tau - (l+1)] L(\rho) = 0$$
 વિકલ સમીકરણથી શરૂ કરી
હાઈડ્રોજન પરમાણુ માટે પ્રસામાન્યકૃત ત્રિજ્યાવર્તી તરંગ વિધેય મેળવો. 7

સૂચના :
$$\int_{0}^{\infty} e^{-\rho} \cdot \rho^{p+1} [L_{q}^{p}(\rho)]^{2} d\rho = \frac{(2q-p+1) (9!)^{3}}{(q-p)!}$$

અથવા

- (1) ત્રિજ્યાવર્તી સમીકરણનો ઉપયોગ કરી સમદિક્ધર્મી દોલકના કોયડાનો ઉકેલ શોધો.
- (2) સમાન ચુંબકીય ક્ષેત્રમાં વિદ્યુતભારિત કણ માટેના ઊર્જા વર્ણપટ અને આઈંગન વિધેયોની ચર્ચા કરો.

- (1) હાઈડ્રોજન પરમાણુ માટે કુલંબીય સ્થિતિમાનનું મૂલ્ય લખો.
- (2) સરળ આવર્તક દોલકનું ક્વૉન્ટમ યંત્રશાસ્ત્ર મહત્વ શું છે ?
- (3) ધ્રુવીય સંમિતિ પોટેન્શિયલ એટલે શું ?
- (4) પાંચમી અવસ્થામાં હાઈડ્રોજન પરમાણુના ઈલેક્ટ્રોનની ઊર્જા _____ છે.
- (5) હાઈડ્રોજન પરમાણુનું સંપૂર્ણ તરંગ વિધેય $\psi_{210} =$ _____.

4. (A) નીચેના પ્રશ્નો લખો :

- (1) હિલબર્ટ અવકાશ પર ટૂંકનોંધ લખો. 7
- (2) રેખીય વેગમાન, ઊર્જા અને સ્થાનની શ્રોડીન્જર નિરૂપણની ચર્ચા કરો. 7

અથવા

3

MM-119

- (1) x, y અને z અક્ષને અનુલક્ષ્તીને સૂક્ષ્મ ભ્રમણ સદિશ માટેના જનરેટર Σ_x, Σ_y અને Σ_z નાં મૂલ્યો $\Sigma_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \Sigma_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \Sigma_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ મેળવો.
- (2) (i) દર્શાવો કે મૂળભૂત કોમ્પ્યુટેશન સંબંધ [x, Px] = iħ એ એંકેક્ય રૂપાંતરણમાં બદલાતો નથી.
 - (ii) $\hat{A} \hat{A} \hat{S} \hat{B} \hat{C}$ સ્વય સંલગ્ન કારક હોય તો દર્શાવો કે $\frac{1-iA}{1+iA}$ એંકેક્ય (unitary) છે.
- (B) ટૂંકમાં જવાબ આપો : (પાંચમાંથી કોઈપણ ત્રણ)
 - (1) $(AB)^+ = _$ ____.
 - (2) $(A^+)^+ = _$ _____.
 - (3) હર્મિશીયન કારકને વ્યાખ્યાયિત કરો.
 - (4) સમય રીવર્સલ એટલે શું ?
 - (5) શા માટે સમય રીવર્સલ કારક એ રેખીય નથી.

Seat No. : _____

MM-119

March-2019

B.Sc., Sem.-VI

307 : Physics

(Mathematical Physics, Classical Mechanics & Quantum Mechanics)

Time : 2:30 Hours]

[Max. Marks : 70

Instructions : (1)	Attempt all questions.
---------------------------	-------------------------------

- (2) Symbols used have their usual meaning.
- 1. (A) Write the following questions :

(1) Show that W
$$[J_{\nu}(x), J_{-\nu}(x)] = \frac{-2 \sin \pi \nu}{\pi x}$$
 if ν is not an integer. 7

$$\int_{0}^{a} J_{\nu} \left(\alpha_{\nu m} \frac{\rho}{a} \right) J_{\nu} \left(\alpha_{\nu n} \frac{\rho}{a} \right) \rho d\rho = 0, m \neq n \text{ and}$$
$$\int_{0}^{a} J_{\nu} \left(\alpha_{\nu m} \frac{\rho}{a} \right) J_{\nu} \left(\alpha_{\nu n} \frac{\rho}{a} \right) \rho d\rho = \frac{a^{2}}{2} [J_{\nu}' (\alpha_{\nu n})]^{2} m = n$$

(i)
$$x J'_{n} = n J_{n} - x J_{n+1}$$

(ii) $x J'_{n} = x J_{n-1} - n J_{n}$
(2) Show that $J_{n+3} + J_{n+5} = \frac{2}{x} (n+4) J_{n+4}$

MM-119

P.T.O.

- (B) Answer in short (any **four** out of **six**) :
 - (1) Write down the generating function for $J_n(x)$
 - (2) Express $f(x) = x^3$ in term of Legendre polynomials.
 - (3) Write down Legendre differential equation.
 - (4) Define Neumann function.
 - (5) Write down the Bessel's differential equation.
 - (6) Write down value of $P_4(x)$ for Legendre polynomial.
- 2. (A) Write the following questions :
 - (1) Using δ notation, obtain Euler Lagrange's question of motion.
 - (2) Obtain Lagrangian for series L-C-R and parallel L-C-R electric circuit on the basis of electro-mechanical analogies .
 7

OR

- (1) Explain geodesic. Show that the geodesic of spherical surface are great circles.
- (2) Obtain Hamilton's of system for a simple harmonic pendulum with moving support.
- (B) Answer in short (any **four** out of **six**) :
 - (1) State Hamiltonian principle.
 - (2) What is phase space ?
 - (3) Write down the value slope at the phase path in one dimension harmonic oscillator.
 - (4) If L is not depend on time then $\frac{dH}{dt} =$ _____.
 - (5) Write Euler Lagrange's equation.
 - (6) What is simple pendulum ?

MM-119

4

- 3. (A) Write the following questions :
 - Find the solution of Schrodinger equation inside of a three dimensional square well potential.
 - (2) Starting with the differential equations :

$$\rho \frac{d^2 L}{d\rho^2} + [2 (e+1) - \rho] \frac{dL}{d\rho} + [\tau - (l+1)] L (\rho) = 0$$

Obtain the normalized radial wave function for H-atom.

Hint:
$$\int_{0}^{\infty} e^{-\rho} \cdot \rho^{p+1} [L_{q}^{p}(\rho)]^{2} d\rho = \frac{(2q-p+1)(9!)^{3}}{(q-p)!}$$

OR

- (1) Using radial equation solve the problem of isotropic oscillator.
- (2) Discuss the energy spectrum and Eigen function for a charged particle in a uniform magnetic field.

(B) Answer in short (any three out of five) :

- (1) Write down value of Coulomb potential in H-atom.
- (2) What is importance of harmonic oscillators in quantum physics ?
- (3) What is spherically symmetric potential?
- (4) The energy of 5th state of electron in H-atom is R_{v} .
- (5) Write down complete wave function of H-atom $\psi_{210} =$ _____.

4. (A) Write the following questions :

- (1) Write short note on Hilbert space.
- (2) Explain a linear momentum, energy and position of the Schrodinger representation.7

MM-119

OR 7

P.T.O.

7

3

Obtain the generator Σ_x, Σ_y and Σ_z for infinitesimal rotation of a vector about x, y and z axis respectively.

	(0	0	0)		(0	0	i \		(0	—i	0)
$\Sigma_r =$	0	0	-i	$\Sigma_{v} =$	0	0	0	$\Sigma_{\tau} =$	i	0	0
л	0/	i	0)	у	∖_i	0	0)	Z	0	0	ر 0

(2) (i) Show that the fundamental commutation relation $[x, Px] = i\hbar$ remain unchanged under unitary transformation.

(ii) If
$$\hat{A}$$
 is any Hermitian operator show that $\frac{1-iA}{1+iA}$ is unitary.

- (B) Answer in short : (any three out of five)
 - (1) $(AB)^+ =$ _____.
 - (2) $(A^+)^+ =$ _____
 - (3) Define Hermitian operator.
 - (4) What is time reversal ?
 - (5) Why is time reversal operator not linear?