Seat No. : _____

MM-120

March-2019

B.Sc. Sem.-VI

307 : Mathematics (Abstract Algebra-II)

Time: 2:30 Hours]

1. (A) (1) Define an Integral Domain. Prove that every finite integral domain is a field. 7

- (2) Let Q be ring of real quaternion's and let a = 2 + 3i 5j + 8k:
 - b = 2 + 2i + 5j 2k and c = i + j are elements in Q then obtain :
 - (i) a+b+c
 - (ii) bc
 - (iii) |b|
 - (iv) multiplicative inverse of a

OR

- (1) Define an unit element in ring R. In usual notations prove that if R is a ring with unity then :
 - (i) a0 = 0a = 0 for every $a \in R$
 - (ii) (-1)(-1) = 1
- (2) Prove that the characteristic of a ring R with unity is n if and only if n is the smallest positive integer with n1 = 0.
- (B) Attempt any **two** :
 - (1) If R is a ring with $a^2 = a$ for each $a \in R$ then show that R is commutative.
 - (2) Give an example of ring elements a and b with the properties that ab = 0, but ba ≠ 0.
 - (3) Let Z₃[i] = {a + ib/a, b ∈ Z₃} = {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i} where i² = -1 be the ring of Gaussian integers modulo 3. Find the multiplicative inverse for a = 1 + 2i in Z₃[i].

[Max. Marks: 70

7

4

P.T.O.

7

7

- 2. (A) (1) Define homomorphism between two rings. Suppose φ : (R, +, •) → (R, ⊕, ⊙)
 be homomorphism and if I is an ideal of R then prove that φ(I) is an ideal of φ(R).
 - (2) Give an example of a left ideal but not a right ideal in a ring R.

OR

- Prove that a non-empty subset I of a ring R is an ideal of R if and only if the following two conditions hold :
 - (i) $a-b \in R$ for $a, b \in I$
 - (ii) ar and $ra \in I$
 - for $a \in I$ and $r \in R$
- (2) Obtain all ideals of ring $(Z_{15}, +_{15}, \cdot_{15})$ and prepare tables for the corresponding quotient rings. 7
- (B) Attempt any **two** :

(1) Let
$$R = (C, +, \cdot)$$
 and $R' = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} / a, b \in R \right\}$ are two rings and if a

mapping
$$\phi : \mathbb{R} \to \mathbb{R}'$$
 as $\phi(a + ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ for every $a + ib \in \mathbb{R}$ then show

that ϕ is a homomorphism.

- (2) Define Kernel of a homomorphism.
- (3) If I = 4Z is an ideal of the ring R = (Z, +, •) then write down all the elements in quotient ring R / I. Also, solve equation $(I + 2) \cdot X = I + 3$ for $X \in R / I$.

3. (A) (1) Define degree for a polynomial
$$f(x)$$
 in $D[x]$.
In usual notation, prove that $[fg] = [f] + [g]$ for $f, g \in D[x]$. 7

(2) Find the g.c.d. of $f(x) = x^5 + 3x^3 + x^2 + 2x + 2$ and $g(x) = x^4 + 3x^3 + 2x^2 + x + 2$ in $Z_5[x]$. Also, express it in the form a(x) f(x) + b(x) g(x). 6

OR

(1)	State and prove division algorithm theorem for polynomials.	7
(2)	Obtain all rational zeroes of the polynomial $f(x) = 2x^3 + 22x^2 - 23x + 12$.	6

MM-120

4

7

7

- (B) Attempt any **two** :
 - (1) Verify irreducibility for the polynomial $f(x) = x^2 + 6$ over the field Z_5 and Z_7 .
 - (2) Suppose f = (1, 1, 2, 3, 0, 0, ...) and $g = (2, 0, -3, 0, 4, 0, 0, ...) \in Z[x]$ then find f + g and $f \cdot g$.
 - (3) Obtain the quotient q(x) and remainder r(x) on dividing $f(x) = 3x^3 + 2x^2 + x + 1$ by $g(x) = x^2 + 3x + 2$ in $Z_5[x]$.

4.	(A)	(1)	Prove that an ideal I in a commutative ring R with unity is a maximal ideal	
			if and only if the quotient ring R/I is a field.	7
		(2)	Find all maximal and prime ideals in $(Z_{36}, +_{36}, \bullet_{36})$.	6
			OR	
		(1)	Prove that an ideal I in a commutative ring R with unity is a prime ideal if	
			and only if the quotient ring R/I is an integral domain.	7
		(2)	Give an example of a prime ideal which is not a maximal ideal in ring.	6
	(B)	Atte	mpt any two :	4
		(1)	Give an example of a finite field containing eight elements.	
		(2)	Prove that if F is a finite field with p^n elements then the mapping $\varphi:F\to F$	
			defined by $\phi(x) = x^p$; $x \in F$ is an automorphism of order n.	
		(3)	Prove that the ideal I = $\langle x^3 - x - 1 \rangle$ is a maximal ideal in Z ₃ [x].	