\qquad

MM-120

March-2019

B.Sc. Sem.-VI

307 : Mathematics

(Abstract Algebra-II)
Time : 2:30 Hours]
[Max. Marks: 70

1. (A) (1) Define an Integral Domain. Prove that every finite integral domain is a field.
(2) Let Q be ring of real quaternion's and let $\mathrm{a}=2+3 \mathrm{i}-5 \mathrm{j}+8 \mathrm{k}$:
$b=2+2 i+5 j-2 k$ and $c=i+j$ are elements in Q then obtain :
(i) $a+b+c$
(ii) bc
(iii) $|\mathrm{b}|$
(iv) multiplicative inverse of a

OR

(1) Define an unit element in ring R. In usual notations prove that if R is a ring with unity then :
(i) $\mathrm{a} 0=0 \mathrm{a}=0$ for every $\mathrm{a} \in \mathrm{R}$
(ii) $(-1)(-1)=1$
(2) Prove that the characteristic of a ring R with unity is n if and only if n is the smallest positive integer with $\mathrm{n} 1=0$.
(B) Attempt any two :
(1) If R is a ring with $a^{2}=a$ for each $a \in R$ then show that R is commutative.
(2) Give an example of ring elements a and b with the properties that $a b=0$, but $\mathrm{ba} \neq 0$.
(3) \quad Let $\mathrm{Z}_{3}[\mathrm{i}]=\left\{\mathrm{a}+\mathrm{ib} / \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{3}\right\}=\{0,1,2, \mathrm{i}, 1+\mathrm{i}, 2+\mathrm{i}, 2 \mathrm{i}, 1+2 \mathrm{i}, 2+2 \mathrm{i}\}$ where $\mathrm{i}^{2}=-1$ be the ring of Gaussian integers modulo 3. Find the multiplicative inverse for $\mathrm{a}=1+2 \mathrm{i}$ in $\mathrm{Z}_{3}[\mathrm{i}]$.
2. (A) (1) Define homomorphism between two rings. Suppose $\phi:(\mathrm{R},+, \cdot) \rightarrow(\mathrm{R}, \oplus, \odot)$ be homomorphism and if I is an ideal of R then prove that $\phi(\mathrm{I})$ is an ideal of $\phi(\mathrm{R})$.
(2) Give an example of a left ideal but not a right ideal in a ring R.

OR

(1) Prove that a non-empty subset I of a ring R is an ideal of R if and only if the following two conditions hold :
(i) $\mathrm{a}-\mathrm{b} \in \mathrm{R}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{I}$
(ii) ar and $\mathrm{ra} \in \mathrm{I}$
for $a \in I$ and $r \in R$
(2) Obtain all ideals of ring $\left(\mathrm{Z}_{15},{ }_{15}, \cdot_{15}\right)$ and prepare tables for the coresponding quotient rings.
(B) Attempt any two :
(1) Let $\mathrm{R}=(\mathrm{C},+, \cdot)$ and $\mathrm{R}^{\prime}=\left\{\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{b} & \mathrm{a}\end{array}\right) / \mathrm{a}, \mathrm{b} \in \mathrm{R}\right\}$ are two rings and if a mapping $\phi: R \rightarrow R^{\prime}$ as $\phi(a+i b)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ for every $a+i b \in R$ then show that ϕ is a homomorphism.
(2) Define Kernel of a homomorphism.
(3) If $\mathrm{I}=4 \mathrm{Z}$ is an ideal of the ring $\mathrm{R}=(\mathrm{Z},+, \cdot)$ then write down all the elements in quotient ring R / I. Also, solve equation $(I+2) \cdot X=I+3$ for $X \in R / I$.
3. (A) (1) Define degree for a polynomial $\mathrm{f}(x)$ in $\mathrm{D}[x]$.

In usual notation, prove that $[\mathrm{fg}]=[\mathrm{f}]+[\mathrm{g}]$ for $\mathrm{f}, \mathrm{g} \in \mathrm{D}[x]$.
(2) Find the g.c.d. of $\mathrm{f}(x)=x^{5}+3 x^{3}+x^{2}+2 x+2$ and $\mathrm{g}(x)=x^{4}+3 x^{3}+2 x^{2}+x+2$ in $\mathrm{Z}_{5}[x]$. Also, express it in the form $\mathrm{a}(x) \mathrm{f}(x)+\mathrm{b}(x) \mathrm{g}(x)$.

OR

(1) State and prove division algorithm theorem for polynomials.
(2) Obtain all rational zeroes of the polynomial $\mathrm{f}(x)=2 x^{3}+22 x^{2}-23 x+12$.
(B) Attempt any two :
(1) Verify irreducibility for the polynomial $\mathrm{f}(x)=x^{2}+6$ over the field Z_{5} and Z_{7}.
(2) Suppose $\mathrm{f}=(1,1,2,3,0,0, \ldots)$ and $\mathrm{g}=(2,0,-3,0,4,0,0, \ldots) \in \mathrm{Z}[x]$ then find $f+g$ and $f \cdot g$.
(3) Obtain the quotient $\mathrm{q}(x)$ and remainder $\mathrm{r}(x)$ on dividing $\mathrm{f}(x)=3 x^{3}+2 x^{2}+x+1$ by $\mathrm{g}(x)=x^{2}+3 x+2$ in $\mathrm{Z}_{5}[x]$.
4. (A) (1) Prove that an ideal I in a commutative ring R with unity is a maximal ideal if and only if the quotient ring R / I is a field.
(2) Find all maximal and prime ideals in $\left(\mathrm{Z}_{36},{ }_{36},{ }^{\circ}{ }_{36}\right)$.

OR

(1) Prove that an ideal I in a commutative ring R with unity is a prime ideal if and only if the quotient ring R / I is an integral domain.
(2) Give an example of a prime ideal which is not a maximal ideal in ring.
(B) Attempt any two :
(1) Give an example of a finite field containing eight elements.
(2) Prove that if F is a finite field with p^{n} elements then the mapping $\phi: \mathrm{F} \rightarrow \mathrm{F}$ defined by $\phi(x)=x^{\mathrm{p}} ; x \in \mathrm{~F}$ is an automorphism of order n .
(3) Prove that the ideal $\mathrm{I}=\left\langle x^{3}-x-1\right\rangle$ is a maximal ideal in $\mathrm{Z}_{3}[x]$.

