Seat No.:	

MD-131

March-2019

B.Sc., Sem.-V

CC-303 : Mathematics (Complex Variables & Fourier Series)

Time: 2:30 Hours] [Max. Marks					: 70	
Instructions:		 All the questions are compulsory. Question 1 and 2 are of 18 marks. Question 3 and 4 are of 17 marks. 				
1.	(A)	(A) (1) State and prove de Moiver's theorem.		-	7	
		(2)	Prov	We that $\cos (z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$.	7	
				OR		
		(1)	Defi	ne sine hyperbolic and cosine hyperbolic functions. Also prove that		
			sin(i	y) = i sinhy and cos (iy) = coshy.	7	
		(2)	For o	complex numbers z_1 and z_2 prove that $ z_1 - z_2 \le z_1 \pm z_2 \le z_1 + z_2 $.	7	
(B) A		Ansv	Answer any two in short:		4	
		(1)	Defi	ne sin z and cos z functions.		
		(2)	Defi	ne convergence of a sequence.		
		(3)	Prov	$e \sin(-z) = -\sin z.$		
2.	(A)	(1)	Deri	ve Cauchy-Riemann equations in Cartesian form .i.e. $u_x = v_y$ and $u_y = -v_x$.	7	
		(2)		$= x^2 - y^2 - 2xy - 2x + 3y$ then find harmonic conjugate v, also find $= u+iv$ in the form of z.	7	
			1(Z)	OR	,	
		(1)	Deri	ve Cauchy-Riemann equations in polar form.	7	
		(2)		we that $f(z) = z ^2$ is continuous everywhere but nowhere differential		
		(2)		ept at the origin.	7	
	(B)	Ans		by two in short:	4	
	(D)	(1)		ne limit of function at a point.	•	
		(2)		ne continuity of function at a point.		
		(3)		ne Harmonic function		
		(3)	2011	TATTE TATANCTION		

Prove that an analytic function f(z) is conformal at z_0 iff $f'(z_0) \neq 0$. 3. (A) (1)

> Find implicit form which maps $z_1 = 1$, $z_2 = 0$ and $z_3 = -1$ onto $w_1 = i$, $w_2 = \infty$ (2) and $w_3 = 1$.

7

6

7

6

4

4

OR

Consider the map $w = ze^{i\pi/4}$ determine the region R' of w-plane (1) corresponding to the triangular region bounded by the lines x = 0, y = 0, x + y = 1 in z-plane.

Find Mobius transformation which maps $z_1 = -1$, $z_2 = 0$ and $z_3 = 1$ onto (2) $w_2 = -i$, $w_2 = 1$, and $w_3 = i$.

Answer any **two** in short :

(1) Define implicit form.

- (2) Define Mobius transformation.
- Define conformal mapping. (3)
- 4. (A) (1) State and prove Bessel's inequality.

OR

7 Obtain Fourier series expansion of $f(x) = x \sin x$. Hence deduce that (2) 6 $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{13} - \frac{1}{35} + \frac{1}{57} \dots \dots$

Find Fourier series for the function $f(x) = x^2$ in $[-\pi, \pi]$ and deduce that (1)

(i)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

(ii)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

(iii)
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$

- Find Fourier series for the function f(x) = x in $[-\pi, \pi]$.
- (B) Answer any **two** in short :

Define fourier series. (1)

- Prove that $\int \cos nx \, dx = 0$, for all n. **(2)**
- (3) Define triangular series.

MD-131 2