Seat No. : _____

[Max. Marks : 70

MF-122

March-2019

B.Sc., Sem.-V

305 : Mathematics (Discrete Mathematics)

Time : 2:30 Hours]

Instructions :		ns :	(1) All the questions are compulsory.	
			(2) Notations and Terminology are standard.	
			(3) Figures to the right indicates the full marks.	
1.	(a)	(1)	Prove that every chain is Lattice. Does converse of this theorem is true or	
			not ? Justify your answer.)
		(2)	Explain Hass Diagram and also draw the Hass Diagram of (S_{210}, D) .)
			OR	
		(1)	State distributive Inequality and prove any one of them.)
		(2)	For a Lattice (L, \leq) , prove that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b, \forall a, b \in L$.)
	(b)	Shor	t Answer : (Any three out of five)	5
		(1)	Find LUB of 10 and 6 in the lattice $\langle S_{30}, D \rangle$.	
		(2)	Define : Partially ordered relation.	
		(3)	Define : Lattice.	
		(4)	Give a relation on the set which is Transitive but neither reflexive nor	
			symmetric.	
		(5)	Give an example of a Poset which is not a Latice.	
2.	(a)	(1)	State De'Morgan's law and prove any one of them.	9
	. ,	(2)	Show that $(S_{30}, *, \oplus)$ and $(P(A), \cap, \cup)$ are isomorphic Lattice for $A = \{a, b, c\}$.)
			OR	
		(1)	Prove that in Distributive lattice if an element has a complement then it	
			must be unique.)
		(2)	For a complemented distributive Lattice (L, $*$, \oplus , 0, 1), prove that	
			$\mathbf{a} \le \mathbf{b} \Leftrightarrow \mathbf{a} \ast \mathbf{b}' = 0 \Leftrightarrow \mathbf{b}' \le \mathbf{a}' \Leftrightarrow \mathbf{a}' \oplus \mathbf{b}' = 1, \forall \mathbf{a}, \mathbf{b} \in \mathbf{L}$)
MF-122			1 P.T.O	

- (B) Short Answer : (Any three out of five)
 - (1) Define : Sub lattice with an example.
 - (2) Define : Bounded Lattice.
 - (3) Define : Lattice Homomorphism.
 - (4) Give an example of a lattice which is complemented but not distributive.
 - (5) Draw $L_1 \times L_2$ where L_1 and L_2 are divisors of 4 and 9 respectively.
- 3. (A) (1) Prove that the only elements which are atoms in a Boolean algebra are those which covers zero. **8**
 - (2) Obtain the SOP and POS canonical forms of the Boolean expression $a(x_1, x_2, x_3) = (x_1 * x_2') \oplus x_3.$ 8

OR

- (1) State and prove stone representation theorem.
- (2) Define equivalent Boolean expression also show that (x ⊕ y) * (x' ⊕ z) and (x * z) ⊕ (x' * y) are equivalent.

2

- (B) Short Answer : (Any **three** out of **five**)
 - (1) Define an Atom.
 - (2) Define Minterm.
 - (3) Find A(12) and A(60) for (S_{120}, D) .
 - (4) Define Symmetric Boolean expression.
 - (5) Define Boolean algebra.

6

Seat No. : _____

MF-122

March-2019

B.Sc., Sem.-V

305 : Mathematics (Number Theory)

Time : 2:30 Hours]

[Max. Marks : 70

1.	(A)	(1)	State and prove Division algorithm theorem.	9
		(2)	Using the Euclidean algorithm to obtain the integer x and y such that	
			gcd(12378, 3054) = 12378x + 3054y.	9
			OR	
		(1)	Define Linear Diophantine equation. Find the solution of linear Diophantine	
			Equation $54x + 21y = 906$ in positive integers.	9
		(2)	Prove that there are infinite number of primes of the form $4n + 3$.	9
	(B)	Atter	mpt any three (in short) :	6
		(1)	If p is a prime number and p/ab, then prove that p/a or p/b.	
		(2)	Is Diophantine equation $2x + 6y = 9$ has solution ? Justify your answer.	
		(3)	A number 360 can be written as product of prime in canonical form.	
		(4)	Find the L.C.M for two integers 306 and 657.	
		(5)	Define prime and relatively prime.	
2.	(A)	(1)	In usual notation prove that $2^{20} \equiv 1 \pmod{41}$ and find the remainder when	
			the sum $1! + 2! + 3! + + 100!$ is divisible by 12.	9
		(2)	Does there exists a solution of the congruence $15x \equiv 9 \pmod{12}$? If so, find	
			out all mutually congruent solution of it.	9
			OR	
		(1)	Define congruence relations and prove that it is an equivalence relation.	9
		(2)	Using Chinese remainder theorem, find integer x such that $2x \equiv l \pmod{3}$	
			$3x \equiv l \pmod{5}; \ 5x \equiv l \pmod{7}.$	9
MF	-122		3 P.T.	0.

- (B) Attempt any **three** (in short) :
 - (1) Solve : $18x \equiv 30 \pmod{42}$.
 - (2) Define complete residue system modulo.

(3)	If $g.c.d(a, b) = d$ then prove that $g.c.d$	$\left(\frac{\mathbf{a}}{\mathbf{d}},\frac{\mathbf{b}}{\mathbf{d}}\right) = 1.$
-----	--	---

- (4) Prove that $n^4 + 4$ is composite number for $n \in N$ with n > 1.
- (5) Prove that the number N = 1571724 is divisible by 9 and 11.

8 8
8
8
8
8
$835^{1910} + 1986^{2061} \equiv 0 \pmod{7}.$ 8

(5) State Fermat's theorem.