Seat No. : _____

MC-118

March-2019

B.Sc., Sem.-V

302 : Mathematics (Analysis-I)

Time : 2:30 Hours] [Max. N				rks : 70
Instructions :			(1) All the questions are compulsory.	
			(2) Notations are usual, everywhere.	
			(3) Figures to the right indicate marks of the question/sub-question.	
1.	(A)	(i)	State and prove Archimedean Property. Using that prove that	7
			if $S = \{ 1/n : n \in N \}$, then in $f S = 0$.	
		(ii)	Prove that the set $N \times N$ is denumerable.	7
OR				
		(i)	State and prove (rational) density theorem.	
		(ii)	Prove that $\sqrt{11}$ is ir-rational.	
	(B)	Attempt any two in short :		
		(1)	Define countable set. Give an example of countable proper subset of N.	
		(2)	Determine the set A of all real number x such that $2x + 3 \le 6$.	
		(3)	Give examples of two disjoint uncountable proper subsets of R.	
2.	(A)	(i)	Prove that a sequence of real numbers is Cauchy iff it is convergent.	7
		(ii)	Using definition show that the sequence $\left\{\frac{n^2+1}{n+100}\right\}$ diverges to ∞ .	7
			OR	
		(i)	State and prove Bolzano-Weierstrass theorem.	
		(ii)	If $S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ then prove that $2 < \lim_{n \to \infty} S_n < 3$.	
	(B)	Attempt any two in short :		
		(1)	Define convergent sequence. Write the limit of sequence	
			1, 0, $\frac{1}{2}$, 0, $\frac{1}{3}$, 0, $\frac{1}{4}$, 0, $\frac{1}{5}$, if it is convergent.	
		(2)	Give an example of a divergent sequence $\{x_n\}$ but $\{x_n^2\}$ converges to 2.	
		(3)	Every monotonic sequence is convergent. True or false ?	
MC	-118		1	Р.Т.О.

3. (A) (i) State and prove intermediate value theorem.

(ii) Using definition verify $\lim_{x \to 6} x^2 + 2x - 7 = 41$, also find δ corresponding for $\epsilon = 1.1$

OR

- (i) If function f is continuous at point a and $\{x_n\}$ is a sequence converging to a, then prove that the sequence $\{f(x_n)\}$ is convergent to f(a).
- (ii) Define uniform continuity of function. Discuss the uniform continuity of the functions $f(x) = \frac{1}{x}$ on $[0, \infty)$.
- (B) Attempt any two in short :
 - (1) Define continuity of function.
 - (2) Give an example of real function which is discontinuous only at two points.
 - (3) Define uniform convergence of sequence.
- 4. (A) (i) Suppose the function *fog* is defined in a neighborhood of point x_0 , and that *g* is differentiable at x_0 , and *f* is differentiable at point $y_0 = f(x_0)$ then prove that *fog* is differentiable at point x_0 .
 - (ii) State mean value theorem and verify it for $f(x) = x^3 3x + 2$ in [-1, 2], find appropriate c. 6

OR

(i) State and prove Darboux's theorem.

(ii) Evaluate :
$$\lim_{x \to 0} \left(\frac{2^x + 3^x + 5^x}{3} \right)^{\frac{1}{x}}, \& \lim_{x \to 0} \frac{e^x - 2 - x - (x^2/3)}{\sin^3 x}$$

2

- (B) Attempt any two in short :
 - (1) State the Chain's rule for differentiation.
 - (2) State roll's theorem.
 - (3) State only L'Hospital rule 1^{st} .

6

4

7

4