Seat No. : \qquad

MB-133
 March-2019
 B.Sc., Sem.-V
 301 : Physics

Time : 2:30 Hours]
[Max. Marks: 70
સૂચના : સંજ્ઞાઓના અર્થ પ્રચલિત પ્રણાલિકા મુજબ છે.

1. (A) (1) હોલ્મહોલ્ટઝ સમીક૨ણને કાર્ટેઝીયન યામ પદ્ધતિમાં વિભાજીત કરો. 7
(2) હોલ્મહોલ્ટઝ સમીકરણને નળાકીય યામપદ્ધતિમાં વિભાજીત કરો.

અથવા
(1) લાપ્લાસ સમીક૨ણને કાર્ટેઝીયન યામ પદ્ધતિમાં વિભાજીત કરો.
(2) વિસ૨ણ સમીકરણને નળાકીય યામ પદ્ધતિમાં વિભાજીત કરો.
(B) કોઈૅપણ ચા૨ પ્રશ્નોના જવાબ આપો :
(1) ત્રિપારિમાણિક તરંગ સમીકરણ લખો.
(2) વાયુ માટે વિસ૨ણ સમીકરણ લખ.
(3) લાપ્લાસનું સમીકરણ લખો.
(4) ઉઠમ્માવાહક સમીકરણ લખો.
(5) શ્રોડિન્જરનું સમીક૨ણ લખો.
(6) હોલ્મહોલ્ટઝનું સમીક૨ણ લખો.
2. (A) (1) નીચેના વિકલ સમીક૨ણનો ઘાત શ્રેણી દ્વા૨ા ઉકકેલ મેળવો :

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d} x^{2}}+\left(\lambda-x^{2}\right) \mathrm{y}=0
$$

(2) ફ્રોબેનિયસની ૨ીતથી બેસેલ સમીક૨ણનો ઉુકેલ મેળવો.

અથવા

(1) નીચેના વિકલ સમીકરણનો ઘાત શ્રેણી દ્વારા ઉકેલ મેળવો :

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{dy}}{\mathrm{~d} x}+2 \mathrm{y}=0
$$

(2) રોન્સ્ક્રીયનની મદદથી નીચે આપેલા વિકલ સમીક૨ણનો ઉકેલ મેળવો :

$$
x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{~d} x^{2}}+x \frac{\mathrm{dy}}{\mathrm{~d} x}+x^{2} \mathrm{y}=0
$$

(B) કોઈપણ ચાર પ્રશ્નોના જવાબ લખ :
(1) સામાન્ય બિંદુની વ્યાખ્યા લખો.
(2) એકાંકીબિંદુની વ્યાખ્યા લખો.
(3) નિયમિત એકાંકીબિંદુની વ્યાખ્યા લખો.
(4) અનિયમિત એકાંકીબિંદુની વ્યાખ્યા લખ.
(5) રોન્સ્ક્રીયનની વ્યાખ્યા લખો.
(6) જો $\mathrm{Y}_{1}=\mathrm{e}^{x}$ અને $\mathrm{Y}_{2}=\mathrm{e}^{-x}$ હોય તો રોન્સ્ક્રીયન $\mathrm{W}\left[\mathrm{Y}_{1}, \mathrm{Y}_{2}\right]$ શોધો.
3. (A) (1) ડી-એલેમ્બર્ટનો સિદ્ધાંત મેળવો.
(2) ગતિ ઊર્જા માટેનું વ્યાપક સમીકરણ મેળવો.

અથવા
(1) દઢ પદાર્થ માટે ઓઈ૯લનું સમીકરણ મેળવો.
(2) દઢ પદાર્થ માટે ગતિઉર્જાનું સમીકરણ મેળવો.
(B) કોઈૅપણ ત્રણ પ્રશ્નોના જવાબ લખો :
(1) મુકત્તાના અંશની વ્યાખ્યા લખો.
(2) કન્સ્ટ્રેઈન્ટની વ્યાખ્યા લખો.
(3) હોલોનોમિક કન્સ્ટ્રેઈન્ટની વ્યાખ્યા લખો.
(4) દઢ પદાર્થની વ્યાખ્યા લખો.
(5) ચેસલ્સનો પ્રમેય લખો.
4. (A) (1) સ૨ળ આવર્તદોલક માટે ઉર્જા આયગન મૂલ્યો માટેનું સમીક૨ણ મેળવો.
(2) કેન્દ્રીય સ્થિતિમાનમાં ગતિ ક૨તાં કણ માટે ત્રિજ્યાવર્તી તરંગ સમીક૨ણ મેળવો.

અથવા

(1) લેડ૨ કારકો (Ladder Operators) વિશે નોંધ લખો.
(2) પેરીટી કારકો (Parity Operators) વિશે નોંધ લખો.
(B) કોઈપણ ત્રણ પ્રશ્નોના જવાબ લખો :
(1) સ૨ળ આવર્તદોલકની વ્યાખ્યા લખો.
(2) ગોલીય યામ પદ્વતિમાં L^{2} નો કા૨ક લબો.
(3) $l=0$ અને $\mathrm{m}=0$ માટે ગોલીય આવર્ત (Spherical Harmonic) $\mathrm{Y}_{l \mathrm{~m}}$ લખો.
(4) $l=1$ અને $\mathrm{m}=0$ માટે ગોલીય આવર્ત (Spherical Harmonic) $\mathrm{Y}_{l \mathrm{~m}}$ લખો.
(5) $l=0$ અને $m=0$ માટે (પોલ૨) ધ્રુવીય આકૃતિ छોરો.
\qquad

MB-133

March-2019
B.Sc., Sem.-V

301 : Physics
Time : 2:30 Hours]
[Max. Marks : 70
Instruction : Symbols have usual meaning.

1. (A) (i) Separate Helmholtz's equation in the cartesian co-ordinate system.
(ii) Separate Helmholtz's equation in the cylindrical co-ordinate system.

OR

(i) Separate the Laplace's equation in the cartesian co-ordinate system.
(ii) Separate the diffusion equation in the cylindrical co-ordinate system.
(B) Answer any four questions :
(1) State 3-dimension wave equation.
(2) State diffusion equation for gas.
(3) State Laplace's equation.
(4) State Heat conduction equation.
(5) State Schrodinger's equation.
(6) State Helmholtz equation.
2. (A) (i) Solve the following differential equation using the power series method :
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\left(\lambda-x^{2}\right) y=0$
(ii) Solve the Bessel's equation using the Frobenius method.

OR

(i) Solve the following differential equation using the power series method :

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{dy}}{\mathrm{~d} x}+2 \mathrm{y}=0
$$

(ii) Solve the following differential equation using the Wronskian method :
$x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+x \frac{\mathrm{dy}}{\mathrm{d} x}+x^{2} \mathrm{y}=0$
(B) Answer any four questions:
(1) Define Ordinary Point.
(2) Define Singular Point.
(3) Define Regular Singular Point.
(4) Define Irregular Singular Point.
(5) Define Wronskian
(6) If $\mathrm{y}_{1}=\mathrm{e}^{x}$ and $\mathrm{y}_{2}=\mathrm{e}^{-x}$, find Wronskian $\mathrm{W}\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$.
3. (A) (i) Derive the D'Alembert's principle.
(ii) Derive the general expression for the Kinetic energy.

OR

(i) Derive the Euler's equation for the Rigid body.
(ii) Derive an equation for the Kinetic Energy of a rigid body.
(B) Answer any three questions:
(1) Define the degrees of freedom.
(2) Define Constraints.
(3) Define Holonomic Constraint.
(4) Define Rigid Body.
(5) State Chasle's theorem.
4. (A) (i) Derive an equation for the energy eigen value of a simple Harmonic Oscillator.
(ii) Derive the Radial wave equation for a particle moving in the central potential.

OR

(i) Write a note on the Ladder Operators.
(ii) Write a note on the Parity Operators.
(B) Answer any three questions:
(1) Define Simple Harmonic Oscillator.
(2) State the operator L^{2} in the spherical polar co-ordinate system.
(3) State the Spherical Harmonic $\mathrm{Y}_{l \mathrm{~m}}$, for $l=0$ and $\mathrm{m}=0$.
(4) State the Spherical Harmonic $\mathrm{Y}_{l \mathrm{~m}}$, for $l=1$ and $\mathrm{m}=0$.
(5) Draw the Polar diagram for $l=0$ and $\mathrm{m}=0$.

