Seat No. : _____

MB-130

March-2019

B.Sc., Sem.-V

301 : Mathematic (Linear Algebra-II)

Time : 2:30 Hours]

[Max. Marks : 70

7

4

7

- Instructions: (1) Each question is compulsory.(2) Figures to right indicate full marks to the question.
- 1. (A) (i) Define an annihilator. Prove that if A is a subset of real vector space V then A^0 (annihilator of A) is a subspace of V*. 7
 - (ii) Find the Dual basis of the basis $B_2 = \{(1, -1, 3), (0, 1, -1), (0, 3, -2)\}$ for the vector space \mathbb{R}^3 .

OR

- (i) Prove that the addition of two linear maps is a linear map.
- (ii) If a linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ is defined as T(x, y, z) = (x + y, 2y + z); $(x, y, z) \in \mathbb{R}^3$, Then solve the operator equation T(x, y, z) = (2, 4).
- (B) Attempt any **TWO** (in short) :
 - (i) Define the Dual basis.
 - (ii) Find N(T) for the linear transformation T : $\mathbb{R}^4 \to \mathbb{R}^3$ defined by T(x, y, z, w) = (x - w, y + z, z - w)
 - (iii) What is the dimension of vector space $L(R^2, R^4)$ and $L(R, R^2)$?
- 2. (A) (i) State and prove the Cauchy-schwarz in equality.
 - (ii) Apply the Gram-Schmidt orthgonalization process to the basis
 B₂ = {(1, -1, 3), (0, 1, -1), (0, 3, -2)} in order to get orthogonal and orthonormal basis for vector space R³.

OR

(i) Prove that every finite dimensional inner product space has an orthonormal basis.

(ii) State the Cramer's rule and using it solve 2x + y = 2, 3y + z = 1 and 4z + x = 5.

MB-130

P.T.O.

- (B) Attempt any **TWO** (In short) :
 - (i) In inner product space V, prove that ||x|| = ||y|| if and only if $(x y) \perp (x + y)$.
 - (ii) Find a non-zero vector orthogonal to the vector x = (1, 2, 1) and y = (4, 5, 2)in an inner product space R³ with standard inner product.
 - (iii) State and prove triangle inequality in an inner product space V.

3. (A) (i) For matrix
$$A = (a_{ii}) \in M_n$$
, Prove that

det A =
$$\sum_{f \in S_n} (\text{sgn } f) a_{f(1)1} a_{f(2)2}, \dots, a_{f(n)n}.$$
 7

(ii) State (only) the Cramer's rule and using it solve 2x + y = 2, 3y + z = 1 and 4z + x = 5.

OR

(i) If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 5 & 1 & 7 & 2 & 6 \end{pmatrix}$$
; $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 4 & 6 & 1 & 7 & 3 \end{pmatrix} \in S_7$. Then,

Find fog, $(gof)^{-1}$, sgn f and sgn (g^{-1}) .

- (ii) In usual notation, Prove that $det(AB) = det A \cdot det B$.
- (B) Attempt any **TWO** (in short) :
 - (i) Define similar matrices.
 - (ii) If det A = -2 then find det(A^3).
 - (iii) State laplace expansion.

4. (A) (i) Diagonalize the matrix
$$A = \begin{pmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 04 & -2 & -4 \end{pmatrix}$$
. 7

(ii) Prove that the eigen values of symmetric linear transformation are real. 6

OR

- (i) Prove that distinct eigen vectors of $T \in L(U, V)$ corresponding to distinct eigen values of T are linearly independent.
- (ii) Verify the Caley-Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 4 & 3 \\ 4 & 6 & 2 \\ 3 & 2 & 11 \end{bmatrix}$.
- (B) Attempt any TWO (In short) :
 - (i) Define similar matrices.
 - (ii) If det A = -2 then find det(A^3).
 - (iii) State laplace expansion.

4

6

4