\qquad

MB-130

March-2019

B.Sc., Sem.-V
 301 : Mathematic
 (Linear Algebra-II)

Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) Each question is compulsory.
(2) Figures to right indicate full marks to the question.

1. (A) (i) Define an annihilator. Prove that if A is a subset of real vector space V then A^{0} (annihilator of A) is a subspace of V^{*}.
(ii) Find the Dual basis of the basis $\mathrm{B}_{2}=\{(1,-1,3),(0,1,-1),(0,3,-2)\}$ for the vector space R^{3}.

OR

(i) Prove that the addition of two linear maps is a linear map.
(ii) If a linear map $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ is defmded as $\mathrm{T}(x, y, z)=(x+y, 2 y+z)$; $(x, y, z) \in \mathrm{R}^{3}$, Then solve the operator equation $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(2,4)$.
(B) Attempt any TWO (in short) :
(i) Define the Dual basis.
(ii) Find $\mathrm{N}(\mathrm{T})$ for the linear transformation $\mathrm{T}: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ defined by
$\mathrm{T}(x, \mathrm{y}, \mathrm{z}, \mathrm{w})=(x-\mathrm{w}, \mathrm{y}+\mathrm{z}, \mathrm{z}-\mathrm{w})$
(iii) What is the dimension of vector space $L\left(R^{2}, R^{4}\right)$ and $L\left(R, R^{2}\right)$?
2. (A) (i) State and prove the Cauchy-schwarz in equality.
(ii) Apply the Gram-Schmidt orthgonalization process to the basis $\mathrm{B}_{2}=\{(1,-1,3),(0,1,-1),(0,3,-2)\}$ in order to get orthogonal and orthonormal basis for vector space R^{3}.

OR

(i) Prove that every finite dimensional inner product space has an orthonormal basis.
(ii) State the Cramer's rule and using it solve $2 x+y=2,3 y+z=1$ and $4 z+x=5$.
(B) Attempt any TWO (In short) :
(i) In inner product space V , prove that $\|x\|=\|\mathrm{y}\|$ if and only if $(x-\mathrm{y}) \perp(x+\mathrm{y})$.
(ii) Find a non-zero vector orthogonal to the vector $x=(1,2,1)$ and $\mathrm{y}=(4,5,2)$ in an inner product space R^{3} with standard inner product.
(iii) State and prove triangle inequality in an inner product space V .
3. (A) (i) For matrix $A=\left(a_{i j}\right) \in M_{n}$, Prove that

$$
\operatorname{det} A=\sum_{f \in S_{n}}(\operatorname{sgn} f) a_{f(1) 1} a_{f(2) 2}, \ldots, a_{f(n) n} .
$$

(ii) State (only) the Cramer's rule and using it solve $2 x+y=2,3 y+z=1$ and $4 \mathrm{z}+x=5$.

OR

Find fog, $(\mathrm{gof})^{-1}, \operatorname{sgn} \mathrm{f}$ and $\operatorname{sgn}\left(\mathrm{g}^{-1}\right)$.
(ii) In usual notation, Prove that $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.
(B) Attempt any TWO (in short) :
(i) Define similar matrices.
(ii) If $\operatorname{det} \mathrm{A}=-2$ then find $\operatorname{det}\left(\mathrm{A}^{3}\right)$.
(iii) State laplace expansion.
4. (A) (i) Diagonalize the matrix $\mathrm{A}=\left(\begin{array}{ccc}11 & -8 & 4 \\ -8 & -1 & -2 \\ 04 & -2 & -4\end{array}\right)$.
(ii) Prove that the eigen values of symmetric linear transformation are real.

OR

(i) Prove that distinct eigen vectors of $\mathrm{T} \in \mathrm{L}(\mathrm{U}, \mathrm{V})$ corresponding to distinct eigen values of T are linearly independent.
(ii) Verify the Caley-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & 3 \\ 4 & 6 & 2 \\ 3 & 2 & 11\end{array}\right]$.
(B) Attempt any TWO (In short) :
(i) Define similar matrices.
(ii) If $\operatorname{det} \mathrm{A}=-2$ then find $\operatorname{det}\left(\mathrm{A}^{3}\right)$.
(iii) State laplace expansion.

