Seat No. : \qquad

AA-121

April-2019
B.Sc., Sem.-IV

CC-205 : Mathematics

Time : 2:30 Hours]
[Max. Marks: 70
સૂચના : (1) તમામ પ્રશ્નો ફરજીયાત છે.
(2) સર્વત્ર સકેતો પ્રચલિત છે.
(3) જમણી ત૨ફના અંક જે તે પ્રશ્ન/પેટા પ્રશ્નોના ગુણભભાર દર્શાવે છે.

1. (A) (1) સમૂહની વ્યાખ્યા આપો. સાબિત કરો કે સમૂહ G માં :
(i) એકમ ઘટકનું અસ્તિત્વ અનન્ય હોય છે.
(ii) વ્યસ્ત ઘટકનું અસ્તિત્વ અનન્ય હોય છે.
(2) ગણ $\mathrm{G}=\mathrm{R}-\{-1\}$ ઉપ૫ ક્રિયા * ની વ્યાખ્યા ; $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ છે; $\mathrm{a}, \mathrm{b} \in \mathrm{R}-\{-1\}$ તો સાબિત કરો કે * દ્રિક ક્રિયા છે અને (G, *) સમૂહ ૨ચે છે.

અથવા
(1) સમશેષ સંબંધની વ્યાખ્યા આપો. ધારો કે $n>0$ નિયત પૂર્ણાંક સંખ્યા છે. સાબિત કરો કે n ને સાપેક્ષ સમશેષ સંબંધ સામ્ય સંબંધ છે.
(2) ધન સંમેય સંખ્યાઓના ગણ Q_{+}માં દ્રિક-ક્રિયા * ની વ્યાખ્યા નીચે પ્રમાણે છે. $a * b=\frac{a b}{2}$; જ્યાં $a, b \in Q_{+}$. સાબિત કરો કે Q_{+}આ દ્રિક-ક્રિયા * હેઠળ એક સમૂહ છે.
(B) કોઈૅપણ બેના ટૂંકમાં જવાબ આપો.
(i) પૂર્ણાંક સંખ્યા $\mathrm{n}>0$ માટે ભાગાકાર વિધિનો પ્રમેય લખો.
(ii) જો $\mathrm{G}=\{1,-1, i,-i\}$ ચક્રિય સમૂહહહોય તો G ના દરેક ઘટકની કક્ષા જણાવો.
(iii) R પરની અસંગઠિત દિક-ક્રિયાનું ઉદાહ૨ણ આપો.
2. (A) (1) સાંત સમૂહ G ના ઉપસમૂહ્હ H માટે લાગ્રાંજનું પ્રમેય લખો અને સાબિત કરો.
(2) સાબિત કરો કે સમૂહ G ના સાંત અશૂન્ય ઉપગણ H માં જો G ની દ્રિક ક્રિયા પણ H ની દ્રિક ક્રિયા હોય તો H એ ઉપગણા છે.

અથવા

(1) જો H એ સમૂહ G નું ઉપસમૂહ છે, $x \in \mathrm{G}$ માટે સાબિત કરો 子े $x^{-1} \mathrm{H} x=\left\{x^{-1} 4 x\right.$: $4 \in \mathrm{H}\}$ પણ G નું ઉપસમૂહ છે.
(2) જો H_{1} અને H_{2} એ G નાં ઉપસમૂહો હોય તો સાબિત કરો કે $\mathrm{H}_{1} \cap \mathrm{H}_{2}$ પણ G નાં ઉપસમૂહો છે. શું $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ હંમેશા G નું ઉિપ સમૂહ થશે ? તમાશા જવાબનું સમર્થન કરો.
(B) કોઈૅપણ બેના ટૂંકમાં જવાબ આપો.
(i) સાબિત કરો કે જે $a^{2}=e \forall a \in G$ હોય તો G સમક્રમી છે.
(ii) યુલરના પ્રમેયનું વિધાન લખો અને યુલશનું ϕ વિધેય સમજાવો.
(iii) જો $\mathrm{G}=<\mathrm{a}>$ એ 10 કક્ષાનો ચક્રિય સમૂહ્હ હોય તો સમૂહ્ G ના બધા જ ઉ ઉસમૂહો લખો.
3. (A) (1) Sn માં પ૨સ્પ૨ અલગ ચક્રોની વ્યાખ્યા આપો. સાબિત કરો કે Sn ના પ૨સ્પ૨ બે અલગ ચક્રો સમક્રી છે.
(2) $\mathrm{F}, \mathrm{G} \in \mathrm{S}_{6}$ भાટे, $\mathrm{f}=\left(\begin{array}{lll}1345 & 6\end{array}\right)$; $\mathrm{g}=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)$ (5 6) હોય तो (i) fg , (ii) gf , (iii) f^{-1}, (iv) fgf^{-1}, (v) fg^{2} મેળવો.

અથવા

(1) નિયત ઉપસમૂહની વ્યાખ્યા આપો તથા સાબિત કરો કે H એ સમૂહૂ G નો નિયત ઉપસમૂહ હોય તો અને તોજ $\mathrm{a}^{\mathrm{H}} \mathrm{a}^{-1} \mathrm{CH}$ જ્યાં $\mathrm{a} \in \mathrm{G}$.
(2) $\mathrm{S}=\{1,2,3\}$ પ૨ના તમામ ક્રમચયોની યાદી બનાવો તथા S_{3} કોષ્ટક તૈયા૨ કરો. 6
(B) કોઈ゙પણ બેના ટૂંકમાં જવાબ આપો.
(i) ચક્ર અને ફેરબદલીની વ્યાળ્યા આપો.
(ii) યુગ્મ અને અયુગ્મ ચક્રોની વ્યાળ્યા આપો.
(iii) બે ચક્રોના સંયોજનની વ્યાખ્યા આપો.
4. (A) (1) સમફપતાનું મૂળભૂત પ્રમેય લખો અને સાબિત કરે.

7
(2) સાબિત કરો કે સમાન કક્ષાના કોઈૅપણ બે શાંત ચક્રિય સમૂહો એકરૂપ હોય છે.

અથવા

(1) સમફપતાના ગર્ભની વ્યાખ્યા આપો તથા સાબિત કરો કે સમરૂપતા $\phi:(\mathrm{G}, 0) \rightarrow\left(\mathrm{G}^{-1}, *\right)$ નો ગર્ભ k_{ϕ} એ સમૂહ્ર G નો નિયત ઉપપસમૂહ છે.
(2) સમૂહોહોી એકરૂપતાની વ્યાખ્યા આપો તથા સાબિત કરો કે બે સમૂહો વચ્ચેની એકરૂપતાનો સંબંધ સામ્ય સંબંધ રચે છે.
(B) કોઈૅપણ બેના ટૂંકમાં જવાબ આપો. 4
(i) સાબિત કરો કे ચક્રિય સમૂહહહંમેશા સમક્રમી હોય છે.
(ii) કેલેના પ્રમેયનું વિધાન લખો.
(iii) વ્યાખ્યા આપો : એકાંત૨ સમૂહ અને અવયવ સમૂહ.
\qquad

AA-121

April-2019

B.Sc., Sem.-IV
 CC-205 : Mathematics

Time : 2:30 Hours]
[Max. Marks : 70
Instructions: (1) All the questions are compulsory.
(2) Notations are usual everywhere.
(3) Figures on the right indicate marks of the questions/sub-questions.

1. (A) (1) Define a group. Prove that in a group G :
(i) There exists unique identity in G, and
(ii) There exists unique inverse in G .
(2) If $*$ is an operation defined as $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}=\mathrm{R}-\{-1\}$, then show that $*$ is a binary operation and $(\mathrm{G}, *)$ is an group.

OR

(1) Define a congruence relation. Prove that "congruence relation. Prove that "congruence modulo n " is an equivalence relation on Z, where $n>0$ is an integer.
(2) Show that the set of all positive rational number Q_{+}Form G group under the composition defined by $a * b=\frac{a b}{2}$; where $a, b \in Q_{+}$.
(B) Answer any two of the following in short:
(i) State division algorithm theorem for integer $\mathrm{n}>0$.
(ii) In a cyclic group $G=\{1,-1, i,-i\}$. Find order of each element of G.
(iii) Give an example of a non-associative binary operation on R .
2. (A) (1) State and prove Lagrange's theorem for a sub-group H of a finite group G .
(2) Prove that a finite non-empty subset H of a group G is a subgroup of G if it is closed under multiplication.

OR

(1) Show that $\left.x^{-1} \mathrm{H} x=\left\{x^{-1} 4 x\right) ; 4 \in \mathrm{H}\right\}$ is a subgroup of G if $x \in \mathrm{G}$ and H is a subgroup of G.
(2) If H_{1} and H_{2} are two subgroups of G then prove that $\mathrm{H}_{1} \cap \mathrm{H}_{2}$ is also a subgroup of G. Is $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ is always subgroup of G ? Justify your answer.
(B) Answer any two of the following in short:
(i) Prove that $\mathrm{a}^{2}=\mathrm{e}$ for each element ' a ' of a group G, then G is a commutative.
(ii) State Euler's theorem and explain Euler's ϕ function.
(iii) If $\mathrm{G}=<\mathrm{a}>$ is a cyclic group of order 10 , then obtain all subgroup of G .
3. (A) (1) Define disjoint cycles in Sn. Prove that any two disjoint cycles in Sn are commutative.
(2) For $\mathrm{F}, \mathrm{G} \in \mathrm{S}_{6}$ find (i) fg , (ii) gf, (iii) f^{-1}, (iv) fgf^{-1}, (v) fg^{2}, where $\mathrm{F}=(134562) ; \mathrm{g}=(1243)(56)$.

OR

(1) Define normal subgroup of G and prove that if H is a normal subgroup of a group G if and only if $\mathrm{a}^{\mathrm{H}} \mathrm{a}^{-1} \mathrm{C}^{\mathrm{H}}$ for each $\mathrm{a} \in \mathrm{G}$.7
(2) List all permutations on $S=\{1,2,3\}$ and prepare group table for S_{3}. 6
(B) Answer any two of the following in short :
(i) Define cycle and transposition.
(ii) Define even and odd permutations.
(iii) Define a product of two permutations.
4. (A) (1) State and prove the fundamental theorem of a homomorphism.

7
(2) Prove that any two finite cyclic group of the same order are isomorphic groups.

OR

(1) Define Kernel of a group homomorphism. Also prove that the Kernel k_{ϕ} of a homomorphism $\phi:(\mathrm{G}, 0) \rightarrow\left(\mathrm{G}^{-1}, *\right)$ is a normal subgroup of G .
(2) Define an isomorphism of a group. Prove that relation of isomorphism in the set of two groups is an equivalence relation.
(B) Answer any two of the following is short :
(i) Prove that cyclic group is always commutative.
(ii) State the Cayley's theorem.
(iii) Define Alternative group and Quotient group.

