Seat No. : _____

AA-121

April-2019

B.Sc., Sem.-IV

CC-205 : Mathematics

Time : 2:30 Hours]

[Max. Marks : 70

7

4

7

7

- **સૂચના :** (1) **તમામ** પ્રશ્નો ફરજીયાત છે.
 - (2) સર્વત્ર સંકેતો પ્રચલિત છે.
 - (3) જમણી તરફના અંક જે તે પ્રશ્ન/પેટા પ્રશ્નોના ગુણભાર દર્શાવે છે.
- 1. (A) (1) સમૂહની વ્યાખ્યા આપો. સાબિત કરો કે સમૂહ G માં :
 - (i) એકમ ઘટકનું અસ્તિત્વ અનન્ય હોય છે.
 - (ii) વ્યસ્ત ઘટકનું અસ્તિત્વ અનન્ય હોય છે.
 - (2) ગણ G = R { -1 } ઉપર ક્રિયા * ની વ્યાખ્યા ; a * b = a + b + ab છે; a, b ∈ R { -1 } તો સાબિત કરો કે * દ્રિક ક્રિયા છે અને (G, *) સમૂહ રચે છે.

અથવા

- (1) સમશેષ સંબંધની વ્યાખ્યા આપો. ધારો કે n > 0 નિયત પૂર્ણાંક સંખ્યા છે. સાબિત કરો કે n ને સાપેક્ષ સમશેષ સંબંધ સામ્ય સંબંધ છે.
- (2) ધન સંમેય સંખ્યાઓના ગણ Q_+ માં દ્રિક-ક્રિયા * ની વ્યાખ્યા નીચે પ્રમાણે છે. $a * b = \frac{ab}{2}$; જ્યાં $a, b \in Q_+$. સાબિત કરો કે Q_+ આ દ્રિક-ક્રિયા * હેઠળ એક સમૂહ છે.
- (B) કોઈપણ બેના ટૂંકમાં જવાબ આપો.
 - (i) પૂર્ણાંક સંખ્યા n > 0 માટે ભાગાકાર વિધિનો પ્રમેય લખો.
 - (ii) $\hat{M} G = \{1, -1, i, -i\}$ ચક્રિય સમૂહ હોય તો G ના દરેક ઘટકની કક્ષા જણાવો.
 - (iii) R પરની અસંગઠિત દ્રિક-ક્રિયાનું ઉદાહરણ આપો.

(2) સાબિત કરો કે સમૂહ G ના સાંત અશૂન્ય ઉપગણ H માં જો G ની દ્રિક ક્રિયા પણ H ની દ્રિક ક્રિયા હોય તો H એ ઉપગણ છે.

અથવા

- (1) જો H એ સમૂહ G નું ઉપસમૂહ છે, $x \in G$ માટે સાબિત કરો કે x^{-1} H $x = \{x^{-1} 4x: 4 \in H\}$ પણ G નું ઉપસમૂહ છે.
- (2) જો H_1 અને H_2 એ G નાં ઉપસમૂહો હોય તો સાબિત કરો કે $H_1 \cap H_2$ પણ G નાં ઉપસમૂહો છે. શું $H_1 \cup H_2$ હંમેશા G નું ઉપ સમૂહ થશે ? તમારા જવાબનું સમર્થન કરો.

AA-121

P.T.O.

- (B) કોઈપણ **બે**ના ટૂંકમાં જવાબ આપો.
 - (i) સાબિત કરો કે જો $a^2 = e \forall a \in G$ હોય તો G સમક્રમી છે.
 - (ii) યુલરના પ્રમેયનું વિધાન લખો અને યુલરનું 🖗 વિધેય સમજાવો.
 - (iii) જો G = < a > એ 10 કક્ષાનો ચક્રિય સમૂહ હોય તો સમૂહ Gના બધા જ ઉપસમૂહો લખો.

3.	(A)	(1)	Sn માં પરસ્પર અલગ ચક્રોની વ્યાખ્યા આપો. સાબિત કરો કે Sn ના પરસ્પર બે અલગ ચક્રો સમક્રમી છે.	7
		(2)	$F, G \in S_6$ માટે, $f = (1 \ 3 \ 4 \ 5 \ 6 \ 2); g = (1 \ 2 \ 4 \ 3) (5 \ 6)$ હોય તો (i) fg, (ii) gf, (iii) f ⁻¹ , (iv) fgf ⁻¹ , (v) fg ² મેળવો.	6
			અથવા	
		(1)	નિયત ઉપસમૂહની વ્યાખ્યા આપો તથા સાબિત કરો કે H એ સમૂહ G નો નિયત ઉપસમૂહ હોય તો અને તો જ a ^H a ⁻¹ CH જ્યાં a ∈ G.	7
		(2)	${f S}=\{1,2,3\}$ પરના તમામ ક્રમચયોની યાદી બનાવો તથા ${f S}_3$ કોષ્ટક તૈયાર કરો.	6
	(B)	કોઈપ	ણ બે ના ટૂંકમાં જવાબ આપો.	4
		(i)	ચક્ર અને ફેરબદલીની વ્યાખ્યા આપો.	
		(ii)	યુગ્મ અને અયુગ્મ ચક્રોની વ્યાખ્યા આપો.	
		(iii)	બે ચક્રોના સંયોજનની વ્યાખ્યા આપો.	
4.	(A)	(1)	સમરૂપતાનું મૂળભૂત પ્રમેય લખો અને સાબિત કરો.	7
		(2)	સાબિત કરો કે સમાન કક્ષાના કોઈપણ બે શાંત ચક્રિય સમૂહો એકરૂપ હોય છે.	6
			અથવા	
		(1)	સમરૂપતાના ગર્ભની વ્યાખ્યા આપો તથા સાબિત કરો કે સમરૂપતા φ : (G, 0) → (G ⁻¹ , *) નો ગર્ભ k _φ એ સમૂહ G નો નિયત ઉપસમૂહ છે.	7
		(2)	સમૂહોની એકરૂપતાની વ્યાખ્યા આપો તથા સાબિત કરો કે બે સમૂહો વચ્ચેની એકરૂપતાનો સંબંધ સામ્ય સંબંધ રચે છે.	6
	(B)	કોઈપ	ણ બે ના ટૂંકમાં જવાબ આપો.	4
		(i)	સાબિત કરો કે ચક્રિય સમૂહ હંમેશા સમક્રમી હોય છે.	
		(ii)	કેલેના પ્રમેયનું વિધાન લખો.	
		(iii)	વ્યાખ્યા આપો : એકાંતર સમૂહ અને અવયવ સમૂહ.	

4

Seat No. :

[Max. Marks : 70

7

4

AA-121

April-2019

B.Sc., Sem.-IV

CC-205 : Mathematics

Time : 2:30 Hours]

ory.
0

- (2) Notations are usual everywhere.
- (3) Figures on the right indicate marks of the questions/sub-questions.

1. (A) (1) Define a group. Prove that in a group G:

- (i) There exists unique identity in G, and
- (ii) There exists unique inverse in G.
- (2) If * is an operation defined as a * b = a + b + ab for all a, b ∈ G = R {-1}, then show that * is a binary operation and (G, *) is an group.
 7

OR

- (1) Define a congruence relation. Prove that "congruence relation. Prove that "congruence modulo n" is an equivalence relation on Z, where n > 0 is an integer.
- (2) Show that the set of all positive rational number Q_+ Form G group under the composition defined by a $*b = \frac{ab}{2}$; where a, $b \in Q_+$.
- (B) Answer any two of the following in short :
 - (i) State division algorithm theorem for integer n > 0.
 - (ii) In a cyclic group $G = \{1, -1, i, -i\}$. Find order of each element of G.
 - (iii) Give an example of a non-associative binary operation on R.
- 2. (A) (1) State and prove Lagrange's theorem for a sub-group H of a finite group G. 7
 - (2) Prove that a finite non-empty subset H of a group G is a subgroup of G if it is closed under multiplication.7

OR

- (1) Show that x^{-1} H $x = \{x^{-1} 4x\}$; $4 \in H\}$ is a subgroup of G if $x \in G$ and H is a subgroup of G.
- (2) If H_1 and H_2 are two subgroups of G then prove that $H_1 \cap H_2$ is also a subgroup of G. Is $H_1 \cup H_2$ is always subgroup of G? Justify your answer.

AA-121

P.T.O.

- (B) Answer any **two** of the following in short :
 - Prove that $a^2 = e$ for each element 'a' of a group G, then G is a (i) commutative.
 - (ii) State Euler's theorem and explain Euler's ϕ function.
 - (iii) If $G = \langle a \rangle$ is a cyclic group of order 10, then obtain all subgroup of G.

3.	(A)	(1)	Define disjoint cycles in Sn. Prove that any two disjoint cycles in Sn are commutative.	7
		(2)	For F, G \in S ₆ find (i) fg, (ii) gf, (iii) f ⁻¹ , (iv) fgf ⁻¹ , (v) fg ² , where	
			$F = (1 \ 3 \ 4 \ 5 \ 6 \ 2); g = (1 \ 2 \ 4 \ 3) (5 \ 6).$	6
			OR	
		(1)	Define normal subgroup of G and prove that if H is a normal subgroup of a	
			group G if and only if $a^H a^{-1} C^H$ for each $a \in G$.	7
		(2)	List all permutations on $S = \{1, 2, 3\}$ and prepare group table for S_3 .	6
	(B)	Ansv	wer any two of the following in short :	4
		(i)	Define cycle and transposition.	
		(ii)	Define even and odd permutations.	
		(iii)	Define a product of two permutations.	
4.	(A)	(1)	State and prove the fundamental theorem of a homomorphism.	7
		(2)	Prove that any two finite cyclic group of the same order are isomorphic groups.	6
			OR	Ĩ
		(1)	Define Kernel of a group homomorphism. Also prove that the Kernel k_{ϕ} of	
			a homomorphism $\phi: (G, 0) \rightarrow (G^{-1}, *)$ is a normal subgroup of G.	7
		(2)	Define an isomorphism of a group. Prove that relation of isomorphism in the set of two groups is an equivalence relation.	6
	(B)	Ansv	wer any two of the following is short :	4
		(i)	Prove that cyclic group is always commutative.	
		(ii)	State the Cayley's theorem.	
		(iii)	Define Alternative group and Quotient group.	