Seat No. : _____

AB-165

April-2019 B.Sc., Sem.-IV **CC-204** : Statistics **Random Variable and Probability Distribution-II** (Old)

Time : 2:30 Hours] [Max						
Instructions :			 All questions are compulsory. Each question carries equal and 14 marks. Statistical tables will be provided on request. Use of s calculator is allowed. 		scientific	
1. (a	a)	(i) (ii)	Statin In us mom	ng the purpose of Bonferronie inequality, prove it. sual notations, derive relation between characteristic function and raw tents.	7 7	
		(i)	Defi	OR De Characteristic function and state its properties	7	
		(i) (ii)	In us	ual notations, prove $P[g(x) > t] \le \frac{E(g(x))}{t}$, $t > 0$	7	
(t)	Answ (i) (ii) (iii)	ver an State State State State State	y two of the following : Inversion Theorem on characteristic function. Boole's inequality and its use. measure of dispersion, on which Chebyshev's inequality is based. its importance.	4	
2. (a	a)	(i) (ii) (i) (ii)	In us distri If X (α, λ) In us deriv State	tual notations, $X \sim N$ (μ , 16), show that median and mode of normal bution are same and equal to μ . and Y are two independent Gamma variates with parameters (α , β) and) respectively, then derive the distribution of X / Y. OR sual notations, for Weibull distribution with two parameters (α , β), re expressions for quartile deviation. and prove additive property of Normal distribution.	7 7 7 7	
(t)	Atten (i) (ii) (iii)	npt an If X (α, λ) of ga State first t State	by two for the following : and Y are two independent Gamma variates with parameters (α , β) and b) respectively, then state the distribution of X + Y. Also, state the mode mma variate with parameters (α , β). In the moment generating function of Normal distribution. Hence, obtain two cumulants.	4	
AB-165	5	~ /		1 P.T.	.0.	

3. (a) (1)	Define Two dimensional random variables, joint probability mass function, Discrete joint probability distribution function.	7
(11)	In usual notations, prove that $E(X) = E(E(Y/X))$.	/
(i)	If the joint probability distribution of random variables (X, Y) be : $ \begin{array}{c c} Y & X \\ \hline Y & -1 & 0 & 1 \\ \hline 2 & 1/ & 2/ & 1/ \\ \hline 3 & 1/ & 1/ & 2/ \end{array} $	7
(ii)	Then, find (1) $P(X = 1, Y = 2)$, $P(X = 0, Y > 1)$, (2) marginal distribution of X and (3) conditional distribution of Y given X. Define conditional expectation. Hence or otherwise, in usual notations, prove that $V(X) = E(V(X)) + V(E(X))$.	7
(b) Att (i) (ii) (iii) (iii) (iv (v)	 empt any three of the following : Define the independence of random variables. State the value of E(E(Y/X)).) Give one example which uses two dimensional random variables.) Define product moment. Define Karl Pearson's correlation co-efficient. 	3
4. (a) (i) (ii)	In usual notations, State and prove Chapman Kolmogorov equation. For the Markov chain $\{X_n, n = 1, 2,\}$, with the state space $S = \{1, 2, 3\}$ and the transition matrix P as shown below : $\begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$ and the initial distribution is $\Pi_0 = (0.7, 0.2, 0.1)$, then obtain following : $P\{X_2 = 3\}, P\{X_2 = 2, X_2 = 3, X_4 = 3, X_6 = 2\}$	7 7
(i)	OR With respect to Markov chain, define terms giving one illustration for each :	
(ii)	irreducible (or ergodic) Markov chain, time homogeneous Markov chain, one step transition probability, communicative state.What is Markov chain ? With respect to Markov chain, define transition matrix. Also, state properties of transition matrix.	7 7
(b) An (i) (ii) (iii) (iv (v)	 swer any three of the following : Define Accessible states. Define persistent (recurrent) states. What is transitive state ? Define with respect to Markov chain state space. Give one practical situation, where Markov chain is applied. 	3
AB-165	2	

Seat No. : _____

AB-165

April-2019

B.Sc., Sem.-IV

CC-204 : Statistics Distribution Theory-II (New)

Time : 2:30 Hours]

Instructions :

[Max. Marks : 70

- Figures to the right indicate full marks of the question/sub-question.
 Notations used in this question paper carry their usual meaning.
 - (3) Use of scientific calculator is allowed.
 - (4) Statistical & logarithmic tables and graph papers will be provided on request.

1.	(a)	(i)	State probability mass function of negative binomial distribution and obtain					
			its moment generating function.	7				
		(ii)	Define Hypergeometric distribution. Also, derive mean and variance of	_				
			Hypergeometric distribution.	7				
OR								
		(1)	If a random variable X follows geometric distribution, then in usual notations, derive mean and variance of X.	7				
		(ii)	In usual notations, obtain recurrent relation for the central moments of					
			negative binomial distribution.	7				
	(b)	Atter	ttempt any two of the following :					
	. ,	(i)	State applications of Hypergeometric distribution.					
		(ii)	State the relation between mean and variance of negative binomial distribution					
		(iii)	State memoryless property of geometric distribution					
		(111)	state memoryless property of geometric abaroanom					
2.	(a)	(i)	Define Weibull distribution. In usual notations, obtain mean and first	_				
			quartile of two parameter Weibull distribution.	7				
		(ii)	Define lognormal distribution. Derive an expression mean and variance of	_				
			Lognormal distribution.	7				
		(-				
		(1)	Derive mean and variance of Laplace distribution.	7				
		(11)	Derive characteristic function of Cauchy distribution.	/				
	(b)	Atter	npt any two of the following :	4				
		(i)	Give applications of Weibull distribution.					
		(ii)	State probability distribution function of Cauchy distribution. For Cauchy distribution, mean does not exist. Give reason.					
		(iii)	State difference between Double Exponential and Laplace distributions.					
AB-1	65		3 P.T.(0.				

- 3. (a) (i) State probability density function of Normal distribution with parameters μ and σ^2 . Derive median and mode of N (μ , σ^2).
 - (ii) Derive expression for central moments of Normal distribution with parameters μ and σ^2 .

- (i) With respect to Bivariate Normal distribution, define marginal and conditional distributions.
 7 If X and Y have bivariate normal distribution with parameters (3,1, 16, 25, 0.6), Determine the following probabilities (A) Pr [3 < Y < 8], (B) Pr [3 < Y < 8/X = 7]
- (ii) State and prove two random variable (X, Y) following Bivariate Normal Distribution, are independent if and only if $\rho = 0$. 7
- (b) Attempt any **three** of the following :
 - (i) The curve of probability density function of $N(\mu, \sigma^2)$ is symmetric. Do you agree ?
 - (ii) Define independence of random variables (X,Y), if they follow Bivariate Normal distribution.
 - (iii) State moment generating function of N(μ , σ^2 }.
 - (iv) State mean of the conditional distribution of Y given X, where (X,Y) follow Bivariate Normal distribution.
 - (v) If (X,Y) follow Bivariate Normal distribution, and if $\rho = 0$, then state the probability density functions of X and Y.

(ii) Examine whether the weak law of large numbers holds good for the sequence

$$X_n$$
, n = 1, 2, 3, ... of n independent variables where $P\left(X_n = \frac{1}{\sqrt{n}}\right) = \frac{2}{3}$, and $P\left(X_n = \frac{1}{\sqrt{n}}\right) = \frac{1}{3}$. 7

OR

- (i) In usual notations, state and prove weak law of large number.
- (ii) Define characteristic function. State its properties. Also, derive relation between raw moments and characteristic function.
- (b) Attempt any **three** :
 - (i) Define convergence in probability.
 - (ii) State Lindberg Levi's and Liapounoff's form of Central Limit Theorem.
 - (iii) State inversion theorem on characteristic function.
 - (iv) Give one application of Central Limit Theorem.
 - (v) State one use of Weak Law of Large Numbers.

7

7

7

3

3

7

7

OR