Seat No. : \qquad

AD-104

April-2019
B.Sc., Sem.-IV

CC-204 : Physics

Time : 2:30 Hours]
[Max. Marks: 70
સૂચાનાઓ : (1) સંજ્ઞાઓ તેમના પ્રચિલત અર્થ ધરાવે છે.
(2) જમણી બાજુના અંક સંબંધિત પ્રશ્નના ગુણ દર્શાવે છે.

1. (A) નીચે દર્શાવ્યા મુજબ લખો :
(1) ઘન પદાર્થોની વિશિષ્ટ ઉઠમ્મા માટે ડી-બાયનો વાદ સમજાવો અને દર્શાવો કे

$$
\mathrm{C}_{\mathrm{V}}=3 \mathrm{RF}_{\mathrm{D}}\left(\frac{\theta_{\mathrm{D}}}{\mathrm{~T}}\right)
$$

(2) સ૨ળ આવર્ત દોલક માટે સરેરાશ ઉઠ્મા ઉર્જા માટેનું સમીક૨ણ મેળવો.

અથવા

(1) એક પ૨માણુ ધરાવતા એક પારિમાણિક સ્ફટિક માટેના વિભાગના આલેખ (Dispersion curve) ના વિશિષ્ટ લક્ષણો વિશે નોંધ લખો.
(2) નીચે દર્શાવેલ ફોનોન-અથડામણ પ્રત્રિયા સમજાવો :
(a) N (Normal) - પ્રક્રિયાઓ
(b) U(Umklapp) - પ્રક્રિયાઓ
(B) ટૂંકમાં જવાબ આપો : (કોઈ゚પણ ચા૨)
(1) ક્યુલોંગ-પેટિટનો નિયમ લખો.
(2) પ્રથમ બ્રિલ્વાન ઝોન વ્યાખ્યાયિત કરો.
(3) ફોનોન એટલે શું ?
(4) આઈનસ્ટાઈનના વાદ પ્રમાણે ઘન પદાર્થમાં દોલકોની સંખ્યા કેટલી હોય ?
(5) બળ અચળાંકના ફ૫માં યંગ-મોડ્યુલસનું સમીકરણ લખો.
(6) ઘન પદાર્થો માટે નીચા તાપમાને વિશિષ્ટ ઉઠઠ્મા અને તાપમાન વચ્ચેનો સંબંધ દર્શાવતું સમીકરણ લખો.
2. (A) નીચે દર્શાવ્યા મુજબ લખો :
(1) આદર્શ વાયુઓ માટે "એન્ટ્રોપપી" તા૨વો.
(2) तા૨વો : $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=-\mathrm{T}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{P}}\right)_{\mathrm{P}}^{2}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}$

અથવા

(1) ક્લોસિયસનું પ્રમેય સમજાવો :
$\oint \frac{\mathrm{dQ}}{\mathrm{T}}$ મેળવો.
(2) દ્વિતીય $\mathrm{T}-\mathrm{dS}$ સમીક૨ણ મેળવો. તેની ઉપયોગિતા ચર્ચો.
（B）ટૂંકમાં જવાબ આપો ：（કોઈ゚પણ ચા૨）
（1）ગ્રનેસન પ્રાચલનું મૂલ્ય કોના ઉપ૨ આધા૨ ૨ાખે છે ？
（2）ઊจ્મા શક્તિ માટેનો રેખીય વિસ્તરણા ગુણાંક α（alpha）વ્યાખ્યાયિત કરો．
（3）અસમદિગ્ધર્મી પ્રક્રિયા શું છે ？
（4）અવજુદ્ધ પ્રક્રિયા એટલે શું ？
（5）વ્યુત્ક્રમણ તાપમાનની વ્યાખ્યા લખો．
（6）પ્રથમ શક્તિ સમીકરણ લખો．
3．（A）નીચે દર્શાવ્યા મુજબ લખો ：
（1）નિયત બાયસ પરિપથની સવિસ્તાર સમજૂતી આપો．
（2）ટ્રાન્ઝિસ્ટર પરિપથ માટે બ્લેક－બોક્સ આકૃતિ દોશે．સંકર પ્રાચલો સમજાવો અને વ્યાખ્યાયિત કરો．

અથવા
（1）કલેકટ૨－ટુ－બેઈઝ બાયસ પરિપથ સમજાવો અને તે માટે સ્થિ૨તા ઘટક તા૨વો．
（2） CE પરિપથ માટે ઈનપુટ અને આઉિટપુટ લાક્ષણિક આલેખો દોરો．આ આલેખો પરથી h－પ્રાચલો $h_{i e}, h_{f e}, h_{r e}, h_{\mathrm{oe}}$ મેળવો．
（B）ટૂંકમાં જવાબ આપો ：（કોઈ゚પણ ત્રણ）
（1）બાયનરી સંખ્યા（1010） 2 નુંડેસીમલ સંખ્યામાં ફૂપાંત૨ણ કરો．
（2）ડેસીમલ સંખ્યા（19） 10 નું બાયનરી સંખ્યામાં ફપાંત૨ણ કરો．
（3）હેક્ઝાડેસીમલ સંખ્યા（A6F） 16 નું બાયનરી સંખ્યામાં ३પાંત૨ણા કરો．
（4）હેક્ઝાડેસીમલ સંખ્યા（B7） 16 નુંડેસીમલ સંખ્યામાં ફપાંત૨ણ કરો．
（5）બાયનરી સંખ્યા（1110） 2 ને સમતુલ્ય ગ્રે－કોડ લખો．
4．（A）નીચે દર્શાવ્યા મુજબ લખો ：
（1）સામાન્ય ઝીમાન અસ૨માં વર્ણપટની રેખાની આવૃત્તિનું સૂત્ર મેળવો．
（2）પરમાણુના સદિશ મૉડલલ વિશે જરૂરી આકૃતિઓ તથા સમીક૨ણો સાથે વિસ્તૃત નોંધ લખો．
（1）ન્યુક્લિઅસની આસપાસ વર્તુળાકા૨ કક્ષામાં ભ્રમણ ક૨તાં ઈલેક્ટ્રોનનું ચુંબકીય ચાકમાત્રાનું સૂત્ર મેળવો．
（2）સ્ટાર્ક અસ૨ની સવિસ્તાર સમજૂતી આપો．
（B）ટૂંકમાં જવાબ આપો ：（કોઈ゚પણ ત્રણ）
（1）હુન્ડનો નિયમ લખો．
（2）પાઉલીનો અપવર્જનનો સિદ્ધાંત લખો．
（3）લા૨મોર આવૃત્તિ વ્યાખ્યાયિત કરો．
（4）પાશ્ચનબેક અસર વ્યાખ્યાયિત કરો．
（5）બ્હોર મેગ્નેટોન માટેનું સમીક૨ણ લખો．

Seat No. : \qquad

AD-104

April-2019

B.Sc., Sem.-IV

CC-204 : Physics
Time : 2:30 Hours]
[Max. Marks : 70
Instructions : (1) Symbols have their usual meaning.
(2) Number on R.H.S. of equations indicate marks.

1. (A) Write the following :
(i) Explain Debye's theory of specific heat of solids and show that
$\mathrm{C}_{\mathrm{V}}=3 \mathrm{RF}_{\mathrm{D}}\left(\frac{\theta_{\mathrm{D}}}{\mathrm{T}}\right)$
(ii) Derive equation of average thermal energy of simple harmonic oscillator.

OR

(i) Write a note on salient features of the dispersion curve for the one dimensional monoatomic crystal with necessary figure.
(ii) Explain the following phonon collision processes :
(a) $\mathrm{N}($ Normal $)$ - processes
(b) U(Umklapp) - processes
(B) Answer in short : (any four)
(a) Write Dulong-Petit Law.
(b) Define first Brillouin zone.
(c) What is a phonon?
(d) According to Einstein's theory what is number of oscillators in a given solid matter?
(e) Write the equation of Young's modulus in terms of force constant.
(f) Write down the equation showing relation between specific heat and temperature of solids for low temperature.
2. (A) Write the following:
(i) Derive the entropy for an ideal gas.
(ii) Derive

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=-\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{P}}^{2}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} \tag{7}
\end{equation*}
$$

OR
(i) Explain Clausius's theorem and obtain, $\oint \frac{\mathrm{dQ}}{\mathrm{T}}$.
(ii) Obtain second $\mathrm{T}-\mathrm{dS}$ equation and discuss its applications.
(B) Answer in short : (any four)
(a) On which factors does the value of Gruneison parameter depends?
(b) Define the co-efficient of linear expansion α (alpha) for thermal energy.
(c) What is anisotropic process?
(d) What is throttling process ?
(e) Define inversion temperature.
(f) Write first energy equation.
3. (A) Write the following:
(i) Explain in detail a Fixed Bias circuit.
(ii) Draw Black-Box diagram for a transistor circuit. Explain and define hybrid parameters.

OR

(i) Explain collector-to-Base bias circuit and derive stability factor for that.
(ii) Draw the input and output characteristics curves for a CE circuit. Obtain four h-parameters $\mathrm{h}_{\mathrm{ie}}, \mathrm{h}_{\mathrm{fe}}, \mathrm{h}_{\mathrm{re}}, \mathrm{h}_{\mathrm{oe}}$ from these curves.
(B) Answer in short: (any three)
(a) Convert binary number $(1010)_{2}$ to its equivalent decimal number.
(b) Convert decimal number (19) ${ }_{10}$ to its equivalent binary number.
(c) Convert Hexadecimal number $(\mathrm{A} 6 \mathrm{~F})_{16}$ to its equivalent binary number.
(d) Convert Hexadecimal number (B7) ${ }_{16}$ to its equivalent decimal number.
(e) Write equivalent gray code of binary number $(1110)_{2}$.
4. (A) Write the following:
(i) Derive an equation for the frequency of spectral lines in case of Normal Zeeman effect.
(ii) Write a detailed note on the vector atom model with necessary figures and equations.
(i) Derive an expression for magnetic moment of electron revolving around nucleus in circulator orbit.
(ii) Explain in detail the Stark effect.
(B) Answer in short: (any three)
(a) Write Hund's law.
(b) Write Pauli's exclusion principle.
(c) Define Larmor frequency.
(d) Define Paschen Back effect.
(e) Write an equation for Bohr Magneton.

