Seat No. :

MB-114

March-2019

B.Sc., Sem.-III

CC-201 : Physics

Time : 2:30 Hours]

[Max. Marks : 70

સૂચના :	(1)	દરેક પ્રશ્નોના	ઉત્તર	લખો.
---------	-----	-----------------------	-------	------

- (2) સંકેતો પ્રચલિત અર્થ ધરાવે છે.
- (3) બધા જ પ્રશ્નોના ગુણ સરખા છે.

(અ) નીચેના પ્રશ્નો લખો. 1.

- (i) સ્ફટિક, પ્રીમીટીવ અને નોન-પ્રીમીટીવ ટ્રાન્સલેશન સદિશ સમજાવો. 7 7
- (ii) દ્વિ-પારિમાણિક બ્રેવેઈસ લેટિસની સમજૂતી આપો.

અથવા

- નિષ્ક્રિય-વાયુના સ્ફટિકની કુલ સ્થિતિ ઊર્જાનું સમીકરણ મેળવો. (i) 7
- (ii) ક્ષકિરણનું સ્ફટિક વડે થતાં વિવર્તન માટે લાઉએનું સમીકરણ મેળવો.
- (બ) ટૂંકમાં જવાબ આપો. (છ માંથી કોઈપણ ચાર ના જવાબ)
 - (1) સમિતિ પ્રક્રિયા એટલે શું ?
 - (2) અણની ત્રિજ્યા એટલે શું ?
 - (3) પેકીંગ-ફ્રેક્શન વ્યાખ્યા.
 - (4) દ-બોગ્લી તરંગલંબાઈનું સુત્ર લખો.
 - (5) દાબકતાની વ્યાખ્યા.
 - (6) બ્રેગનો નિયમ લખો.

(અ) નીચેના પ્રશ્નો લખો. 2.

NPN ટ્રાન્ઝિસ્ટર માટે CE એમલીફાયરનો પરિપથ દોરી તેની ઈનપુટ અને આઉટપુટ (i) લાક્ષણિકતા દોરો અને d.c. ભાર રેખા કેવી રીતે દોરાય અને Q બિન્દુ કેવી રીતે મેળવાય એ સમજાવો. 7 (ii) CB રચનામાં લીકેજ પ્રવાહ સમજાવો અને IC પ્રવાહ માટેનું સૂત્ર મેળવો. 7

અથવા

- (i) દર્શાવો કે class-A એમ્પ્લીફાયરની મહત્તમ કાર્યક્ષમતા 25% છે. 7
- (ii) સિલિકોન કન્ટ્રોલ રેફિટફાયર (SCR)ની રચના અને કાર્ય પદ્ધતિ સમજાવો. 7

MB-114

7

4

- (5) ઝોન પ્લેટ એટલે શું ?
- (4) વિવર્તનના પ્રકાર જણાવો.
- (3) ગ્રેટિંગ વર્ણપટ એટલે શું ?
- (2) વિભેદન શક્તિ એટલે શું ?
- (1) વિવર્તન એટલે શું ?
- (બ) ટૂંકમાં જવાબ આપો. (**પાંચ** માંથી કોઈપણ **ત્રણ** ના જવાબ)
- (ii) ટેલિસ્કોપની વિભેદન શક્તિ અને ટેલિસ્કોપની વિવર્ધન શક્તિ સમજાવો. 7
- (i) સમતલ વિવર્તન ગ્રેટીંગની વિભેદન શક્તિનું સૂત્ર મેળવો.

અથવા

- (ii) બે સ્લિટ વડે થતું ફોન હોફર વિવર્તન સમજાવો અને તીવ્રતા માટેનું સમીકરણ તારવો. 7
- (i) ઝોન પ્લેટ પર નોંધ લખો અને તેની કેન્દ્રલંબાઈનું સૂત્ર મેળવો.

4. (અ) નીચેના પ્રશ્નો લખો.

- (5) પ્રસામાન્યકૃત એટલે શું ?
- (4) મુક્ત કણ એટલે શું ?
- (3) હેમિલ્ટોનીયન કારક લખો.
- (2) સ્ટીફન-બોલ્ટઝમેનનો નિયમ લખો.
- (1) પ્લાન્ક અચળાંકનું મૂલ્ય આપો.
- (બ) ટૂંકમાં જવાબ આપો. (**પાંચ** માંથી કોઈપણ **ત્રણ** જવાબ)
- $x > 0 \psi_2(x) = e^{-x} \sin \alpha x$ છે તો પ્રસામાન્ચકૃત અચળાંક મેળવો.
- wi $x < 0 \psi_1(x) = e^x \sin \alpha x$
- (ii) એક પારિમાણિક તરંગ વિધેય $\psi(x) = e^{-|x|} \sin \alpha x$
- (i) સંભાવના P અને પ્રવાહ ઘનતા S એ સાતત્ય સમીકરણ $\frac{dp}{dt}$ + divs = 0 ને સંતોષે છે તેમ દર્શાવો.

અથવા

- (ii) ફ્રેન્ક-હર્ટઝનો પ્રયોગ સમજાવો.
- (i) કોમ્પ્ટન અસરમાં તરંગ લંબાઈ $\lambda \lambda_o = \frac{h}{m_o c} (1 \cos \theta)$ સૂત્ર મેળવો. 7

3. (અ) નીચેના પ્રશ્નો લખો.

- (6) ટનલ ડાયોડનો ઉપયોગ લખો.
- (5) ઝેનર ડાયોડનો ઉપયોગ લખો.
- (4) CE એમ્પ્લીફાયરનો ઉપયોગ લખો.
- (3) Q-બિન્દુને વ્યાખ્યાયિત કરો.
- (2) પ્રવાહલબ્ધી α અને β વચ્ચેનો સંબંધ લખો.
- (1) ટ્રાન્ઝીસ્ટર એટલે શું ?
- (બ) ટૂંકમાં જવાબ આપો. (છ માંથી કોઈપણ ચાર ના જવાબ)

7

7

3

7

7

3

Seat No. :

MB-114

March-2019

B.Sc., Sem.-III

CC-201 : Physics

Time : 2:30 Hours] [Max. Marks : 70 **Instructions :** (1)All questions carry equal marks. (2)All questions are *compulsory*. (3)Symbols used have their usual meaning. 1. (A) Answers the following questions : 7 (i) Explain lattice, primitive and non-primitive translation vector. Discuss two dimensional bravis lattice. 7 (ii) OR (i) Derive the equation for total potential energy of a crystal of inert gas atom. 7 7 (ii) Derive the Laue's equation for diffraction of X-ray by a crystal. (B) Answer in short : (any **four** out of six) 4 (1) What is symmetry operation ? What is atomic radius? (2)(3) Define packing fraction. (4) Write down equation of de-Broglie wavelength. (5) Define compressibility. (6) Write equation for Bragg's law. 2. (A) Answers the following questions : (i) Draw the CE amplifier circuit of NPN transistor. Draw the input and output curves and explain how a d.c. load line is drawn and the position of 7 Q point is determined. (ii) Explain leakage current in CB configuration and obtain the equation for IC. OR 7 (i) Show that the maximum efficiency of a class A amplifier is 25%. Explain the construction and working of Silicon Controlled Rectifier (SCR). 7 (ii)

MB-114

	(B)	Ansv	ver in short : (any four out of six)	4	
		(1)	What is transistor ?		
		(2)	Write down the relation between α and β current gain.		
		(3)	Define Q point.		
		(4)	Write down application of CE amplifier.		
		(5)	Write down use of Zener diode.		
		(6)	Write down use of tunnel diode.		
3.	(A)	Ansv	vers the following questions :		
		(i)	Obtain the expression for wavelength $\lambda - \lambda_0 = \frac{h}{m_0 c} (1 - \cos \theta)$ in Compton		
			effect.	7	
		(ii)	Explain Frank-Hertz experiment.	7	
			OR		
		(i)	Show that probability P and current density S satisfy continuity equation		
			$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\mathbf{t}} + \mathrm{d}\mathbf{i}\mathbf{v}$ s = 0	7	
		(ii)	The wave function in one dimension $w(x) = e^{- x } \sin \alpha x$	7	
		(11)	where $x < 0$ w. $(x) = e^x \sin \alpha x$,	
			$x > 0, w_{1}(x) = e^{-x} \sin \alpha x$		
			$x \ge 0$ $\psi_2(x) = e^{-x} \sin \alpha x$		
			To calculate the normalization constant.		
	(B)	Ansv	ver in short : (any three out of five)	3	
		(1)	Give the value of Planck constant.		
		(2)	Write down Stefan Boltzman Law.		
		(3)	Write down Hamiltonian operator.		
		(4)	What is free particle ?		
		(5)	What is Norm ?		
1	(A)	Answers the following question :			
7.	(11)	(i)	Write short note on zone plate and derive the equation for focal length of a		
		(-)	zone plate.	7	
		(ii)	Discuss Fraunhofer diffraction by a double slit and obtain the expression for		
			intensity.	7	
			OR		
		(i)	Obtain the expression for the resolving power of plane diffraction grating.	7	
((ii)	Explain resolving power of telescope and magnifying power of telescope.	7	
	(B)	Answer in short : (any three out of five)			
		(1)	What is diffraction ?		
		$\dot{(2)}$	What is resolving power?		
		(4)	\mathcal{O} I		
		(2) (3)	What is a grating spectrum ?		
		(2) (3) (4)	What is a grating spectrum ? State type of diffraction.		