\qquad

MB-114

March-2019
B.Sc., Sem.-III

CC-201 : Physics
Time : 2:30 Hours]
[Max. Marks: 70
સૂચના : (1) દરેક પ્રશ્નોના ઉત્તર લખો.
(2) સકેતો પ્રચલિત અર્થ ધરાવે છે.
(3) બધા જ પ્રશ્નોના ગુણ સરખા છે.

1. (અ) નીચેના પ્રશ્નો લખો.
(i) સ્ફટિક, પ્રીમીટીવ અને નોન-પ્રીમીટીવ ટ્રાન્સલેશન સદિશ સમજાવો.
(ii) દ્વ-પારિમાણિક બ્રેવેઈસ લેટિસની સમજૂતી આપો. 7

અથવા
(i) નિષ્ક્રિય-વાયુના સ્ફટિકની કુલ સ્થિતિ ઊર્જાનું સમીક૨ણ મેળવો.
(ii) ક્ષાિરણનું સ્ફટિક વડે થતાં વિવર્તન માટે લાઉએનું સમીકરણ મેળવો.
(બ) ટૂંકમાં જવાબ આપો. (છ માંથી કોઈીપણ ચા૨ ના જવાબ)
(1) સમિતિ પ્રક્રિયા એટલે શું ?
(2) અणુની ત્રિજ્યા એટલે શું ?
(3) પેકીંગ-ફેફેશન વ્યાળ્યા.
(4) ઈ-બોગ્લી તરંગલંબાઈનું સુત્ર્ર લબ.
(5) દાબકતાની વ્યાખ્યા.
(6) બ્રેગનો નિયમ લખ.
2. (અ) નીચેના પ્રશ્નો લખો.
(i) NPN ટ્રાન્ઝિસ્ટ૨ માટે CE એમલીફાયરનો પરિપથ દોરી તેની ઈનપુટ અને આઉુપુટ લાક્ષણિકતા દોરો અને d.c. ભા૨ રેખા કેવી રીતે દોરાય અને Q બિન્દુ કેવી રીતે મેળવાય એ સમજાવો.
(ii) CB ૨ચનામાં લીકેજ પ્રવાહ સમજાવો અને IC પ્રવાહ માટેનું સૂત્ર મેળવો.

અથવા
(i) દર્શાવો કे class-A એभ્પ્લીફાયરની મહત્તમ કાર્યક્ષમતા 25% છે.
(ii) સિલિકોન કન્ટ્રોલ રેફિટફાય૨ (SCR)ની ૨ચના અને કાર્ય પદ્ધતિ સમજાવો.
(બ) ટૂંકમાં જવાબ આપો. (છ માંથી કોઈૅપણ ચાર ના જવાબ)
(1) ટ્રાન્ઝીસ્ટ૨ એટલે શું ?
(2) પ્રવાહલબ્ધી α અને β વચ્ચેનો સંબંધ લખો.
(3) Q-બિન્દુને વ્યાખ્યાયિત કરો.
(4) CE એન્થ્લીફાયરનો ઉપયોગ લખો.
(5) ઝેન૨ ડાયોડનો ઉપપયોગ લખો.
(6) ટનલ ડાયોડનો ઉપયોગ લખો.
3. (અ) નીચેના પ્રશ્નો લખો.
(i) કોમ્પ્ટન અસરમાં તરંગ લંબાઈ $\lambda-\lambda_{\mathrm{o}}=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{o}} \mathrm{c}}(1-\cos \theta)$ સૂત્ર મેળવો.
(ii) ફ્નેન્હર્ટઝનો પ્રયોગ સમજાવો.

અથવા

(i) સંભાવના P અને પ્રવાહ ઘનતા S એ સાતત્ય સમીક૨ણ $\frac{\mathrm{dp}}{\mathrm{dt}}+\operatorname{divs}=0$ ને સંતોષે છે તેમ દર્શાવો.
(ii) એક પારિમાણિક તરંગ વિધેય $\psi(x)=\mathrm{e}^{-|x|} \sin \alpha x$

$$
\begin{aligned}
& \text { જ્યાં } \left.\begin{array}{l}
x<0 \psi_{1}(x)=\mathrm{e}^{x} \sin \alpha x \\
x>0 \psi_{2}(x)=\mathrm{e}^{-x} \sin \alpha x \text { છે તો પ્રસામાન્યકૃત અચળાંક મેળવો. }
\end{array} .=\begin{array}{ll}
\\
x
\end{array}\right)
\end{aligned}
$$

(બ) ટૂંકમાં જવાબ આપો. (પાંચ માંથી કોઈૅપણ ત્રણ જવાબ)
(1) પ્લાન્ક અચળાંકનું મૂલ્ય આપો.
(2) સ્ટીફન-બોલ્ટઝમેનનો નિયમ લખો.
(3) હેમિલ્ટોનીયન કા૨ક લખો.
(4) મુક્ત કણ એટલે શું ?
(5) પ્રસામાન્યકૃત એટલે શું ?
4. (અ) નીચેના પ્રશ્નો લખો.
(i) ઝોન પ્લેટ પ૨ નોંધ લખો અને તેની કેન્દ્રલંબાઈનું સૂત્ર મેળવો.
(ii) બે સ્લિટ વડે થતું ફોન હોફર વિવર્તન સમજાવો અને તીવ્રતા માટેનું સમીકરણા તા૨વો.

અથવા
(i) સમતલ વિવર્તન ગ્રેટીંગની વિભેદન શક્તિનું સૂત્ર મેળવો. 7
(ii) ટેલિસ્કોપની વિભેદન શક્તિ અને ટેલિસ્કોપની વિવર્ધન શક્તિ સમજાવો. 7
(બ) ટૂંકમાં જવાબ આપો. (પાંચ માંથી કોઈૅપણ ત્રણ ના જવાબ)
(1) વિવર્તન એટલે શું ?
(2) વિભેદન શક્તિ એટલે શું ?
(3) ગ્રેટિંગ વર્ણપટ એટલે શું ?
(4) વિવર્તનના પ્રકા૨ જણાવો.
(5) ઝોન પ્લેટ એટલે શું ?

Seat No. : \qquad

MB-114

March-2019
B.Sc., Sem.-III

CC-201 : Physics
Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) All questions carry equal marks.
(2) All questions are compulsory.
(3) Symbols used have their usual meaning.

1. (A) Answers the following questions :
(i) Explain lattice, primitive and non-primitive translation vector.
(ii) Discuss two dimensional bravis lattice.

OR

(i) Derive the equation for total potential energy of a crystal of inert gas atom.
(ii) Derive the Laue's equation for diffraction of X-ray by a crystal. 7
(B) Answer in short : (any four out of six)
(1) What is symmetry operation?
(2) What is atomic radius?
(3) Define packing fraction.
(4) Write down equation of de-Broglie wavelength.
(5) Define compressibility.
(6) Write equation for Bragg's law.
2. (A) Answers the following questions :
(i) Draw the CE amplifier circuit of NPN transistor. Draw the input and output curves and explain how a d.c. load line is drawn and the position of Q point is determined.
(ii) Explain leakage current in CB configuration and obtain the equation for IC.

OR

(i) Show that the maximum efficiency of a class A amplifier is 25%.
(ii) Explain the construction and working of Silicon Controlled Rectifier (SCR).
(B) Answer in short : (any four out of six)
(1) What is transistor?
(2) Write down the relation between α and β current gain.
(3) Define Q point.
(4) Write down application of CE amplifier.
(5) Write down use of Zener diode.
(6) Write down use of tunnel diode.
3. (A) Answers the following questions :
(i) Obtain the expression for wavelength $\lambda-\lambda_{\mathrm{o}}=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{o}} \mathrm{c}}(1-\cos \theta)$ in Compton effect.
(ii) Explain Frank-Hertz experiment.

OR

(i) Show that probability P and current density S satisfy continuity equation $\frac{\mathrm{dp}}{\mathrm{dt}}+\operatorname{div} \mathrm{s}=0$
(ii) The wave function in one dimension $\psi(x)=\mathrm{e}^{-|x|} \sin \alpha x$
where $x<0 \quad \psi_{1}(x)=\mathrm{e}^{x} \sin \alpha x$

$$
x>0 \quad \psi_{2}(x)=\mathrm{e}^{-x} \sin \alpha x
$$

To calculate the normalization constant.
(B) Answer in short : (any three out of five)
(1) Give the value of Planck constant.
(2) Write down Stefan Boltzman Law.
(3) Write down Hamiltonian operator.
(4) What is free particle?
(5) What is Norm?
4. (A) Answers the following question :
(i) Write short note on zone plate and derive the equation for focal length of a zone plate.
(ii) Discuss Fraunhofer diffraction by a double slit and obtain the expression for intensity.

OR

(i) Obtain the expression for the resolving power of plane diffraction grating.
(B) Answer in short: (any three out of five)
(1) What is diffraction?
(2) What is resolving power?
(3) What is a grating spectrum?
(4) State type of diffraction.
(5) What is zone plate?

