બધા જ પ્રશ્નો ફરજીયાત છે. (1) જરૂર જણાય ત્યાં ઉત્તર પ્રચલિત સંકેતોમાં મેળવો. (2)ઉત્તરવહીમાં પ્રશ્નક્રમ તથા પેટાપ્રશ્નક્રમ પ્રશ્નપત્ર મુજબ જ લખો. (3) (a) (i) વિધેય $f(x, y) = \frac{x^3 - y^3}{x^2 + y^2}; x^2 + y^2 \neq 0$ = 0: $x^2 + y^2 = 0$ ના બિંદ (0, 0) આગળ સાતત્યની ચર્ચા કરો. (ii) નીચેના વિધેયોના પુનરાવર્તિત લક્ષ બિંદુ (0, 0) આગળ મેળવો. (1) $f(x, y) = \frac{\sin(x+y)}{x+y}$ (2) $f(x, y) = \frac{(x^2 + y^2)}{x - y}$ અથવા ધરાવે અને તે L ની બરાબર થાય. નીચેના વિધેચોના લક્ષ મેળવો : (1) $(x, y) \xrightarrow{\lim} (0, 0) \frac{xy}{x^2 + v^2}$. (2) $(x, y) \xrightarrow{\lim} (0, 0) \left(x^2 \sin \frac{y}{x} \right)$. પુનરાવર્તિત લક્ષની વ્યાખ્યા આપો.

CC-201 : Mathematics (Advanced Calculus-I) (For Gujarati Medium)

MD-116

March-2019

B.Sc., Sem.-III

Time : 2:30 Hours]

સૂચના :

1.

- સાબિત કરો : જો $\phi(x)$ એ $(a, \phi(a)) = (a, b)$ બિંદુએ સતત હોય અને (i) $(x, y) \xrightarrow{\lim} (a, b) \quad f(x, y) = L \in R$ હોય, તો $x \xrightarrow{\lim} a f(x, \phi(x))$ અસ્તિત્વ
- (ii)

નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો : (ગમે તે બે) (b)

- (i)
- (ii) કિંમત મેળવો : $x \xrightarrow{\lim} 0 y \xrightarrow{\lim} 0 y^2 \sin\left(\frac{x}{y}\right)$
- (iii) ગણ $S \subset R^n$ ના લક્ષબિંદુની વ્યાખ્યા આપો.

Seat No. :

[Max. Marks: 70

7

7

4

P.T.O.

2. (a) (i) સ્વાર્ત્ઝનું પ્રમેય લખો અને સાબિત કરો. તેનું પ્રતિપ સાચું છે ? ચકાસો.

(ii) જો $x^x y^y z^z = c$ હોય, તો સાબિત કરો કે $x = y = z; \frac{\partial^2 z}{\partial x \partial y} = -[x(1 + \log x)]^{-1}; c$ અચળ સંખ્યા છે. 7

7

4

7

7

3

7

7

3

અથવા

(i)
$$f(x,y) = \frac{xy^2}{x^2 + y^2}, (x, y) \neq (0, 0)$$

= 0, $(x, y) = (0, 0)$ વિધેયનું $(0, 0)$ બિંદુ આગળ $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ની દિશામાં દિક્ વિકલન શોધો.

(ii) યંગનું પ્રમેય લખો અને સાબિત કરો.

(i)
$$\Re U = e^{xyz}$$
 હોય તો $\frac{\partial^2 U}{\partial z^2}$ ની કિંમત શોધો.

(ii) દિક્ વિકલન
$$D_u f(x)$$
 શોધવાનું સૂત્ર લખો.

(iii)
$$\Re f(x, y) = \frac{x + y}{x - y}$$
 હોય, તો $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ શોધો.

 (ii) સાબિત કરો કે આપેલ પરિમિતિ ધરાવતા બધા જ ત્રિકોણ પૈકી સમબાજુ ત્રિકોણ મહત્તમ હોય છે.

અથવા

(i) વિધેય
$$f(x, y) = e^{ax}\cos by + ix$$
 અને y ના ધાતમાં વિસ્તરણના પ્રથમ ત્રણ પદો મેળવો.

(ii)
$$\hat{\mathbf{M}} \mathbf{u} = \operatorname{cosec}^{-1} \sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}} \hat{\mathbf{U}} \mathbf{u}, \, \hat{\mathbf{u}} \, \mathbf{u} \, \mathbf{U} \, \mathbf{u} \, \mathbf{u} + y \, \frac{\partial \mathbf{u}}{\partial y} = -\frac{\tan \mathbf{u}}{12}.$$

(i) [ablau
$$f(x, y)$$
 - f[black bla

(iii)
$$\Re f(x, y) = x \log y + y \log x \, \mathrm{d} \, \mathrm{d} \, \mathrm{d} \, \frac{\partial^2 f}{\partial x \partial y}$$
 ની કિંમત શોધો.

(ii) વક્ર
$$f(x, y) = 0$$
 પરના દિક્બિંદુના અસ્તિત્વ માટેની આવશ્યક શરત તારવો.

અથવા

(i) વક્ર $r = f(\theta)$ ની વક્રતા ત્રિજ્યા માટેનું સમીકરણ શોધો.

(ii) વિધેય
$$f(x, y) = \log xy - i (x - 1)$$
 અને $(y - 1)$ ની ધાતમાં વિસ્તરણ કરો.

- (i) સુરેખા y = mx + c ની વક્રતા ત્રિજ્યા શું થાય ?
- (ii) જો દ્વિબિંદુ નિશિત હોય, તો r, s અને t વચ્ચેનો સંબંધ લખો.
- (iii) xy + y = 1 શરત નીચે શોધો.

3.

Seat No. : _____

MD-116

March-2019

B.Sc., Sem.-III

CC-201 : Mathematics (Advanced Calculus-I) (For English Medium)

Time : 2:30 Hours]

- **Instructions :** (1) All questions are compulsory.
 - (2) Give your answers in usual notations, if necessary.
 - (3) Write question number and sub-question number in answer sheet according to the question paper.

1. (a) (i) Discuss the continuity at the point (0, 0), if

$$f(x, y) = \frac{x^3 - y^3}{x^2 + y^2}; x^2 + y^2 \neq 0$$

$$= 0; x^2 + y^2 = 0$$

(ii) Find the iterated limits for function at the point (0, 0).

(1)
$$f(x, y) = \frac{\sin(x + y)}{x + y}$$

(2) $f(x, y) = \frac{(x^2 + y^2)}{x - y}$

OR

3

- (i) Let function $\phi(x)$ is continuous at a point (a, $\phi(a)$) = (a, b) and $(x, y) \xrightarrow{\lim} (a, b)$ f(x, y) exists and is equal to $L \in \mathbb{R}$ then prove that $x \xrightarrow{\lim} a f(x, \phi(x))$ exists and is equal to L.
- (ii) Evaluate the following limits, if exist :

(1)
$$(x, y) \xrightarrow{\lim} (0, 0) \frac{xy}{x^2 + y^2}$$
.
(2) $(x, y) \xrightarrow{\lim} (0, 0) \left(x^2 \sin \frac{y}{x}\right)$

- (b) Give the answers in brief : (Any two)
 - (i) Define iterated limits.
 - (ii) Evaluate $x \xrightarrow{\lim} 0 y \xrightarrow{\lim} 0 y^2 \sin\left(\frac{x}{y}\right)$.

(iii) Define limit point of set
$$S \subset \mathbb{R}^n$$
.

MD-116

P.T.O.

[Max. Marks: 70

7

7

4

- 2. (a) (i) State and prove Schwartz's theorem. Is converse true ? Justify.
 - (ii) If $x^x y^y z^z = c$ then prove at x = y = z; $\frac{\partial^2 z}{\partial x \partial y} = -[x(1 + \log x)]^{-1}$; c is constant.

OR

(i) Find the directional derivative of the function

$$f(x,y) = \frac{xy^2}{x^2 + y^2}, \quad (x, y) \neq (0, 0)$$

= 0, $(x, y) = (0, 0)$ at point (0, 0) along the direction of the
vector $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

(ii) State and prove Young's theorem.

- (b) Give the answers in brief : (Any **two**)
 - (i) If U = e^{xyz} then find the value of $\frac{\partial^2 U}{\partial z^2}$.
 - (ii) Write the formula to find directional derivative $D_u f(x)$.

(iii) If
$$f(x, y) = \frac{x + y}{x - y}$$
 then find $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$.

3.

- (a) (i) State and prove Euler's theorem on homogenous function of two variables x and y having degree m. 7
 - (ii) Show that of all triangles, having given perimeter, the largest is an equilateral triangle.

OR

(i) Find first three terms in the expansion of $f(x, y) = e^{ax}\cos by$ in the power x and y.

(ii) If
$$u = \csc^{-1} \sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}}$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{\tan u}{12}$.

- (b) Give the answers in brief : (Any two)
 - (i) Write Maclaurin's series of function f(x, y).
 - (ii) Define differentiation of function of two variables.

(iii) If
$$f(x, y) = x \log y + y \log x$$
 then find the value of $\frac{\partial^2 f}{\partial x \partial y}$

(ii) Derive a necessary condition for the existence of a double point on the curve f(x, y) = 0.

OR

- (i) Derive the formula of radius of curvature for the curve $r = f(\theta)$.
- (ii) Expand $f(x, y) = \log xy$ in the power of (x 1) and (y 1).
- (b) Give the answers in brief : (Any two)
 - (i) What is the curvature of a straight-line y = mx + c?
 - (ii) If double point is NODE then write the relation between r, s and t.
 - (iii) Find the extreme value of xy under the condition x + y = 1.

3

7

7

3

7

7

4