Seat No. : \qquad

MD-116
 March-2019

B.Sc., Sem.-III

CC-201 : Mathematics
 (Advanced Calculus-I)
 (For Gujarati Medium)

Time : 2:30 Hours]
[Max. Marks : 70
સૂચના : (1) બધા જ પ્રશ્નો ફરજીયાત છે.
(2) જર૨ જણાય ત્યાં ઉત્તર પ્રચલિત સકેતોમાં મેળવો.
(3) ઉત્ત૨વહીમાં પ્રશ્નક્રમ તથા પેટાપ્રશ્નક્રમ પ્રશ્નપત્ર મુજબ જ લબો.

1. (a) (i) विधेय $\mathrm{f}(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}} ; x^{2}+y^{2} \neq 0$

$$
=0 ; x^{2}+y^{2}=0
$$

ના બિંદુ $(0,0)$ આગળ સાતત્યની ચર્ચા કરો.
(ii) નીચેના વિધેયોના પુનરાવર્તિત લક્ષ બિંદુ $(0,0)$ આગળ મેળવો.
(1) $\mathrm{f}(x, \mathrm{y})=\frac{\sin (x+\mathrm{y})}{x+\mathrm{y}}$
(2) $\mathrm{f}(x, y)=\frac{\left(x^{2}+y^{2}\right)}{x-y}$

અથવા
(i) સાબિત કરો : જો $\phi(x)$ એ $(\mathrm{a}, \phi(\mathrm{a}))=(\mathrm{a}, \mathrm{b})$ બિંદુએ સતત હોય અને $(x, \mathrm{y}) \xrightarrow{\lim }(\mathrm{a}, \mathrm{b}) \mathrm{f}(x, \mathrm{y})=\mathrm{L} \in \mathrm{R}$ હोય, तो $x \xrightarrow{\lim } \mathrm{a}(x, \phi(x))$ અस्તિત્વ ધરાવે અને તે L ની બરાબર થાય.
(ii) નીચેના વિધેયોના લક્ષ મેળવો :
(1) $(x, y) \xrightarrow{\lim }(0,0) \frac{x y}{x^{2}+y^{2}}$.
(2) $(x, y) \xrightarrow{\lim }(0,0)\left(x^{2} \sin \frac{y}{x}\right)$.
(b) નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો : (ગમે તે બે)
(i) પુનાવર્તિતત લક્ષની વ્યાખ્યા આપો.
(ii) કિંમત મેળવો : $x \xrightarrow{\lim } 0 y \xrightarrow{\lim } 0 y^{2} \sin \left(\frac{x}{y}\right)$.
(iii) ગણ $\mathrm{S} \subset \mathrm{R}^{\mathrm{n}}$ ના લક્ષબિંદુની વ્યાખ્યા આપો.
2. (a) (i) સ્વાત્ઝ્ઝનું પ્રમેય લખો અને સાબિત કરો. તેનું પ્રતિપ સાયું છે ? ચકાસો.
(ii) જો $x^{x} \mathrm{y}^{\mathrm{y}} \mathrm{z}^{\mathrm{z}}=\mathrm{c}$ હોય, તો સાબિત કરો \&े $x=\mathrm{y}=\mathrm{z} ; \frac{\partial^{2} \mathrm{z}}{\partial x \partial \mathrm{y}}=-[x(1+\log x)]^{-1}$; c અચળ સંખ્યા છે.

અથવા
(i) $\mathrm{f}(x, \mathrm{y})=\frac{x \mathrm{y}^{2}}{x^{2}+\mathrm{y}^{2}},(x, \mathrm{y}) \neq(0,0)$ $=0, \quad(x, y)=(0,0)$ વિધેયનું $(0,0)$ બિંદુ આગળ $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ની દિશામાં દિક્ વિકલન શોધો.
(ii) યંગનું પ્રમેય લખો અને સાબિત કરે.
(b) નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો : (ગમે તે બે)
(i) $x>U=e^{x y z}$ હોય તો $\frac{\partial^{2} \mathrm{U}}{\partial \mathrm{z}^{2}}$ ની કિંમત શોધો.
(ii) हिક્ વિકલન $\mathrm{D}_{\mathrm{u}} \mathrm{f}(x)$ શોધવાનું સૂત્ર લખ.
(iii) જો $\mathrm{f}(x, \mathrm{y})=\frac{x+\mathrm{y}}{x-\mathrm{y}}$ હોય, તો $x \frac{\partial \mathrm{f}}{\partial x}+\mathrm{y} \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ शोધો.
3. (a) (i) m ઘાતવાળા દ્વિચલ વિધેય માટેનું ऑઈீલશનું પ્રમેય લખો અને સાબિત કરો.
(ii) સાબિત કરો કે આપેલ પરિમિતિ ધરાવતા બધા જ ત્રિકોણ પૈકી સમબાજુ ત્રિકોણ મહત્તમ હોય છે.

અથવા
(i) વિધેય $\mathrm{f}(x, y)=\mathrm{e}^{2 x} \cos$ by ના x અને y ના ઘાતમાં વિસ્તરણના પ્રથમ ત્રણ પદો મેળવો.
(ii) $જ ો \mathrm{u}=\operatorname{cosec}^{-1} \sqrt{\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}}$ હોય, તો સાબિત કરો કे $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{\tan u}{12}$.
(b) નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો : (ગમે તે બે)
(i) विધેય $\mathrm{f}(x, y)$ ની મેકલોરિન શ્રેઢી લખો.
(ii) દ્વિચલ વિધિયના વિકલનની વ્યાખ્યા આપો.
(iii) જો $\mathrm{f}(x, \mathrm{y})=x \log \mathrm{y}+\mathrm{y} \log x$ હોય, તો $\frac{\partial^{2} \mathrm{f}}{\partial x \partial \mathrm{y}}$ ની કિંમત શોધો.
4. (a) (i) द्विચલ વિધેય માટેનું ટेઈ૯લ૨નું પ્રમેય લખો અને સાબિત કરો.

7
(ii) $વ ક ્ ર f(x, y)=0$ પરના Eિક્બિંદુના અસ્તિત્વ માટેની આવશ્યક શરત તારવો.

અથવા

(i) $વ ક ્ ર ~ r ~=f(\theta) ~ ન ી ~ વ ક ્ ર ત ા ~ ત ્ ર િ જ ્ ય ા ~ મ ા ટ ે ન ુ ં ~ સ મ ી ક ર ણ ~ શ ો ધ ો . ~$
(ii) વિધેય $\mathrm{f}(x, y)=\log x y$ નું $(x-1)$ અને ($\mathrm{y}-1)$ ની ઘાતમાં વિસ્ત૨ણ કરે.
(b) નીચેના પ્રશ્નોના દૂંમાં જવાબ આપો : (ગમે તે બે)
(i) સુરેખ $\mathrm{y}=\mathrm{m} x+\mathrm{c}$ ની વક્રતા ત્રિજ્યા શું થાય ?
(ii) જો દ્વિબિંદુ નિશિત હોય, તો r, s અને t વશ્ચ્ચેનો સંબંધ લખો.
(iii) $x y$ નું સ્થાનનીય સ્થિ૨ મૂલ્ય $x+y=1$ શરત નીચે શોધો.
\qquad

MD-116

March-2019
B.Sc., Sem.-III

CC-201 : Mathematics
(Advanced Calculus-I)
(For English Medium)
Time : 2:30 Hours]
[Max. Marks: 70
Instructions : (1) All questions are compulsory.
(2) Give your answers in usual notations, if necessary.
(3) Write question number and sub-question number in answer sheet according to the question paper.

1. (a) (i) Discuss the continuity at the point $(0,0)$, if

$$
\begin{align*}
\mathrm{f}(x, \mathrm{y}) & =\frac{x^{3}-\mathrm{y}^{3}}{x^{2}+\mathrm{y}^{2}} ; x^{2}+\mathrm{y}^{2} \neq 0 \tag{7}\\
& =0 ; x^{2}+\mathrm{y}^{2}=0
\end{align*}
$$

(ii) Find the iterated limits for function at the point $(0,0)$.

$$
\begin{aligned}
& \text { (1) } \mathrm{f}(x, \mathrm{y})=\frac{\sin (x+\mathrm{y})}{x+\mathrm{y}} \\
& \text { (2) } \mathrm{f}(x, \mathrm{y})=\frac{\left(x^{2}+\mathrm{y}^{2}\right)}{x-\mathrm{y}}
\end{aligned}
$$

OR

(i) Let function $\phi(x)$ is continuous at a point $(a, \phi(a))=(a, b)$ and $(x, y) \xrightarrow{\lim }(\mathrm{a}, \mathrm{b}) \quad \mathrm{f}(x, \mathrm{y})$ exists and is equal to $\mathrm{L} \in \mathrm{R}$ then prove that $x \xrightarrow{\lim } \mathrm{a}(x, \phi(x))$ exists and is equal to L .
(ii) Evaluate the following limits, if exist :
(1) $(x, y) \xrightarrow{\lim }(0,0) \frac{x y}{x^{2}+y^{2}}$.
$(2) \quad(x, y) \xrightarrow{\lim }(0,0)\left(x^{2} \sin \frac{y}{x}\right)$.
(b) Give the answers in brief: (Any two)
(i) Define iterated limits.
(ii) Evaluate $x \xrightarrow{\lim } 0 y \xrightarrow{\text { lim }} 0 y^{2} \sin \left(\frac{x}{y}\right)$.
(iii) Define limit point of set $\mathrm{S} \subset \mathrm{R}^{\mathrm{n}}$.
2. (a) (i) State and prove Schwartz's theorem. Is converse true ? Justify.
(ii) If $x^{x} y^{y} z^{z}=\mathrm{c}$ then prove at $x=\mathrm{y}=\mathrm{z} ; \frac{\partial^{2} \mathrm{z}}{\partial x \partial \mathrm{y}}=-[x(1+\log x)]^{-1}$; c is constant.
(i) Find the directional derivative of the function

$$
\begin{aligned}
& \mathrm{f}(x, y)=\frac{x y^{2}}{x^{2}+\mathrm{y}^{2}}, \quad(x, y) \neq(0,0) \\
& =0, \quad(x, y)=(0,0) \text { at point }(0,0) \text { along the direction of the } \\
& \text { vector }\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \text {. }
\end{aligned}
$$

(ii) State and prove Young's theorem.
(b) Give the answers in brief: (Any two)
(i) If $U=e^{x y z}$ then find the value of $\frac{\partial^{2} U}{\partial z^{2}}$.
(ii) Write the formula to find directional derivative $\mathrm{D}_{\mathrm{u}} \mathrm{f}(x)$.
(iii) If $\mathrm{f}(x, \mathrm{y})=\frac{x+\mathrm{y}}{x-\mathrm{y}}$ then find $x \frac{\partial \mathrm{f}}{\partial x}+\mathrm{y} \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$.
3. (a) (i) State and prove Euler's theorem on homogenous function of two variables x and y having degree m.
(ii) Show that of all triangles, having given perimeter, the largest is an equilateral triangle.

OR

(i) Find first three terms in the expansion of $\mathrm{f}(x, y)=\mathrm{e}^{\mathrm{ax}} \cos$ by in the power x and y.
(ii) If $u=\operatorname{cosec}^{-1} \sqrt{\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}}$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{\tan u}{12}$.
(b) Give the answers in brief: (Any two)
(i) Write Maclaurin's series of function $\mathrm{f}(x, \mathrm{y})$.
(ii) Define differentiation of function of two variables.
(iii) If $\mathrm{f}(x, \mathrm{y})=x \log y+\mathrm{y} \log x$ then find the value of $\frac{\partial^{2} \mathrm{f}}{\partial x \partial \mathrm{y}}$.
4. (a) (i) State and prove Taylor's for the function of two variables.
(ii) Derive a necessary condition for the existence of a double point on the curve $\mathrm{f}(x, \mathrm{y})=0$.

OR

(i) Derive the formula of radius of curvature for the curve $\mathrm{r}=\mathrm{f}(\theta)$.
(ii) Expand $\mathrm{f}(x, \mathrm{y})=\log x \mathrm{y}$ in the power of $(x-1)$ and $(\mathrm{y}-1)$.
(b) Give the answers in brief: (Any two)
(i) What is the curvature of a straight-line $\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{c}$?
(ii) If double point is NODE then write the relation between r, s and t .
(iii) Find the extreme value of $x y$ under the condition $x+y=1$.

