Seat No. : \qquad

AB-114

April-2019
B.Sc., Sem.-II

CC-103 : Mathematics
(Diff. Eq ${ }^{\text {ns. }}$. And Co-ordinate Geometry)
Time : 2:30 Hours]
[Max. Marks: 70

સૂચના : (1) આ પ્રથ્નપત્રમાં કુલ ચાર પ્રથ્નો છે.
(2) જમણી બાજુના અંક જે-તે પ્રથન/પેટા-પ્રથનના ગુણ દર્શાવે છે.

1. (A) (1) બર્નોલીનું વિકલ સમીકરણ લખો અને તેના ઉકેલની રીત સમજાવો.
(2) સમીકરણ ઉકેલો :
(i) $(\sin y-\cos x) d x+(x \cos y+\sin y) d y=0$
(ii) $\frac{\mathrm{dy}}{\mathrm{d} x}-x y=x^{3} y^{2}$

અથવા
(1) લાગ્રાંજનું વિકલ સમીકરણ ઉકેલવાની રીત સમજાવો તથા સમીકરણ $p^{2}-6 p x+3 y=0$ નો ઉકેલ મેળવો.
(2) સમીકરણ ઉકેલો:
(i) $\mathrm{p}^{2}-(x+2 \mathrm{y}) \mathrm{p}+\mathrm{y}(x+\mathrm{y})=0$
(ii) $x+y=\left(\frac{1+p}{1-p}\right)^{2}$
(B) ટૂંકમાં જવાબ આપો : (ગમે તે ચાર)
(1) વિકલ સમીકરણ $\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{\frac{1}{2}}=\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$ ની કક્ષા લખો.
(2) ઉદ્ગમબિંદુમાંથી પસાર થતી તમામ રેખાઓનું વિકલ સમીકરણ મેળવો.
(3) પ્રથમ કક્ષાના સમપરિમાણીય વિકલ સમીકરણનું ઉદાહરણ આપો.
(4) ક્લેરોટનું વિકલ સમીકરણ લખો.
(5) વિકલ સમીકરણ $\mathrm{M}(x, y) \mathrm{d} x+\mathrm{N}(x, y) \mathrm{dy}=0$ યથાર્થ હોવા માટેની આવશ્યક અને પર્યાપ્ત શરત લખો.
(6) વિકલ સમીકરણ $(y-x p)(p+1)=p$ નો સામાન્ય ઉકેલ લખો.
2. (A) (1) સાબિત કરો : $\frac{1}{\mathrm{f}\left(\mathrm{D}^{2}\right)} \cos \mathrm{ax}=\frac{\cos \mathrm{ax}}{\mathrm{f}\left(-\mathrm{a}^{2}\right)}$; જ્યા $\mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0 \cdot \frac{1}{\mathrm{D}^{2}+4} \cos 3 x$ नुં સાદું૩૫ આપો.
(2) સમીકરણ ઉકેલો:
(i) $\quad\left(D^{4}-6 D^{3}+11 D^{2}-6 D\right) y=0$
(ii) $\left(D^{2}+3 D-10\right) y=e^{2 x}$

અથવા
(1) સાબિત કરો: $\frac{1}{f(D)} e^{a x} V=e^{a x} \frac{1}{f(D+a)} V$; જ્યાં $f(D+a) \neq 0$ અને V એ ચલ x નું વિધેય છે.
(2) સમીકરણ ઉકેલો :
(i) $(\mathrm{D}+1)^{2} \mathrm{y}=x^{2} \mathrm{e}^{x}$
(ii) $\left(x^{2} \mathrm{D}^{2}-2 x \mathrm{D}+2\right) \mathrm{y}=x^{3}$
(B) ટૂંકમાં જવાબ આપો : (ગમે તે ચાર)
(1) સાદુંરૅપ આપો : $\frac{1}{\mathrm{D}-1} x^{2}$.
(2) વિકલ સમીકરણ $\left(\mathrm{D}^{2}-5 \mathrm{D}+6\right) \mathrm{y}=0$ નો સામાન્ય ઉકેલ મેળવો.
(3) સાદુંર૫ આપો : $\frac{1}{\mathrm{D}-2} \mathrm{e}^{2 x}$
(4) $\frac{1}{\mathrm{D}^{2}+\mathrm{a}^{2}} \sin \mathrm{ax}$ નું સૂત્ર લખો.
(5) જેનો સામાન્ય ઉકેલ $\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{\mathrm{ax}}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{b} x}$ હોય, તેવું વિકલ સમીકરણ મેળવો.
(6) વિકલ સમીકરણ $f(D) y=F(X)$ નું વિશિષ્ટ સંકલ મેળવવાનું સૂત્ર લખો.
3. (A) (1) સમતલ $l x+\mathrm{my}+\mathrm{nz}=\mathrm{p}, \mathrm{p} \neq 0$ ગોલક $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$ ને સ્પર્શે તે માટેની શરત તથા સ્પર્શબિંદુના યામ મેળવો.
(2) સાબિત કરો કे ગોલકો $x^{2}+y^{2}+z^{2}+4 x+4 y+4 z-13=0$ અને $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-20 x-36 \mathrm{y}-14 \mathrm{z}+73=0$ પરસ્પર બહારથી સ્પર્શો છે. તથા સ્પર્શબંધુ (2/5, 2, - 1/5) છे.

અથવા

(1) R^{3} ના બે ભિન્ન ગોલકો લંબચ્છેદી હોવાની આવશ્યક અને પર્યાપ્ત શરત મેળવો. બતાવો કे ગોલકો $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-2 x+4 \mathrm{y}+3=0$ અને $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+4 x+6 \mathrm{y}+2 \mathrm{z}+5=0$ લંબચ્છેદી ગોલકો છે.
(2) સમતલ $2 x-y+2 z=5$ ને સમાંતર, ગોલક $x^{2}+y^{2}+z^{2}-4 x+2 y-4=0$ ના સ્પર્શતલો તથા સ્પર્શાબંદુઓ મેળવો.
(B) ટૂટૂકમાં જવાબ આપો : (ગમે તે ત્રાણ)
(1) સમીકરણ $x^{2}+2 \mathrm{y}^{2}+3 \mathrm{z}^{2}-4 x+5 \mathrm{y}+6 \mathrm{z}=0$ શા માટે ગોલક ન દર્શાવે ?
(2) ગોલકના પ્રચલ સમીકરણ લખો.
(3) r_{1} અને r_{2} ત્રિજ્યા તેમજ C_{1} અને C_{2} કેન્દ્રવાળા બે ગોલકો પરસ્પર અંદરથી સ્પર્શે તે માટેની શરત કઈ છે ?
(4) ઉપવલયજનું વ્યાપક સમીકરણ લખો.
(5) એકપૃષ્ઠ અતિવલયજનું વ્યાપક સમીકરણા લખો.
4. (A) (1) પ્રચલિત સંકેતમાં શાંકવનું ધ્રુવીય સમીકરણા $\frac{1}{\mathrm{r}}=1+\mathrm{e} \cos \theta$ મેંળવો.
(2) R^{3} માં બિંદુ A ના ગોલીય યામ $(2, \pi / 4, \pi / 6)$ હોય, તો તેના કાર્તેઝીય યામ અને નળાકારીય યામ મેળવો.

અथवા

(1) R^{3} માં (α, β, γ) બिંદુમાંથી પસાર થતી અને ગોલક $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$ ને સ્પર્શતી સર્જકરેખાવાળા પરિસ્પર્શી શંકુનું સમીકરણ મેળવો.
(2) Z -અક્ષને સમાંતર સર્જકરેખાવાળા નળાકારનો આધારવક $x^{2}+y^{2}+z^{2}=8$, $x+2 \mathrm{y}+2 \mathrm{z}=6$ હોય, તો તે નળાકારનું સમીકરણ મેળવો.
(B) ટૂંદમાં જવાબ આપો : (ગમે તે ત્રણા
(1) R^{2} માં $(1,-\sqrt{3})$ કાર્તેઝીય યામવાળા બિંદુના ધ્રુવીય યામ શોધો.
(2) ધ્રુવીય સમીકરણ $\mathrm{r} \sin \theta=12-3 \mathrm{r}$ કયો વક્ક દર્શાવે છે ?
(3) રેખા $\mathrm{r} \cos (\theta-\pi / 4)=2 \sqrt{2}$ નું કાર્તેઝીય સમીકરણ મેળવો.
(4) व્યાખ્યા આપો: સમશંકુ
(5) Z-અક્ષને સમાંતર અને (α, β, γ) બિંદુમાંથી પસાર થતાં અક્ષવાળા અને r -ત્રિજ્યાવાળા સમનળાકારનું સમીકરણ લખો.
\qquad

AB-114

April-2019

B.Sc., Sem.-II

CC-103 : Mathematics
(Diff. Eq ${ }^{\text {ns. And Co-ordinate Geometry) }}$
Time : 2:30 Hours]
[Max. Marks: 70

Instructions: (1) There are four questions.
(2) Figure to the right indicate full marks of the question/ sub-question.

1. (A) (1) Write the Bernoulli's differential equation and explain the method of its solution.
(2) Solve the equations:
(i) $\quad(\sin y-\cos x) d x+(x \cos y+\sin y) d y=0$
(ii) $\frac{\mathrm{dy}}{\mathrm{d} x}-x \mathrm{y}=x^{3} \mathrm{y}^{2}$

OR

(1) Explain the method to solve the Lagrange's differential equation. Also solve $p^{2}-6 p x+3 y=0$.
(2) Solve the equations:
(i) $\mathrm{p}^{2}-(x+2 \mathrm{y}) \mathrm{p}+\mathrm{y}(x+\mathrm{y})=0$
(ii) $x+y=\left(\frac{1+p}{1-p}\right)^{2}$
(B) Give the answer in short: (Any four)
(1) Write the order of the differential equation: $\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{\frac{1}{2}}=\frac{d^{2} y}{d x^{2}}$.
(2) Find the differential equation of all lines passing through origin.
(3) Give an example of the homogeneous differential equation of first order.
(4) Write the Clairaut's differential equation.
(5) State the necessary and sufficient condition for the differential equation $\mathrm{M}(x, y) \mathrm{d} x+\mathrm{N}(x, y) \mathrm{dy}=0$ to be exact.
(6) Write a general solution of a differential equation $(y-x p)(p+1)=p$.
2. (A) (1) Prove that : $\frac{1}{f\left(D^{2}\right)} \cos a x=\frac{\cos a x}{f\left(-\mathrm{a}^{2}\right)}$; where $\mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0$. Also simplify $\frac{1}{\mathrm{D}^{2}+4} \cos 3 x$.
(2) Solve the equations:
(i) $\quad\left(D^{4}-6 D^{3}+11 D^{2}-6 D\right) y=0$
(ii) $\left(D^{2}+3 D-10\right) y=e^{2 x}$

OR

(1) Prove that: $\frac{1}{f(D)} e^{a x} V=e^{a x} \frac{1}{f(D+a)} V$; Where $f(D+a) \neq 0$ and V is function of variable x.
(2) Solve the equations:
(i) $(\mathrm{D}+1)^{2} \mathrm{y}=x^{2} \mathrm{e}^{x}$
(ii) $\left(x^{2} \mathrm{D}^{2}-2 x \mathrm{D}+2\right) \mathrm{y}=x^{3}$
(B) Give the answer in short: (Any four)
(1) Simplify : $\frac{1}{\mathrm{D}-1} x^{2}$.
(2) Obtain the solution of differential equation $\left(D^{2}-5 D+6\right) y=0$.
(3) Simplify : $\frac{1}{\mathrm{D}-2} \mathrm{e}^{2 x}$
(4) Write the formula for $\frac{1}{\mathrm{D}^{2}+\mathrm{a}^{2}} \sin \mathrm{ax}$.
(5) Find a differential equation whose general solution is $y=c_{1} e^{a x}+c_{2} e^{b x}$.
(6) Write the formula to obtain particular integral of a differential equation $f(D) y=F(X)$.
3. (A) (1) Find the condition that the plane $1 x+m y+n z=p, p \neq 0$ touches the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. Also obtain the co-ordinates of the plane of contact.
(2) Prove that the spheres $x^{2}+y^{2}+z^{2}+4 x+4 y+4 z-13=0$ and $x^{2}+y^{2}+z^{2}-20 x-36 y-14 z+73=0$ touch each other externally.

Also the point of contact is $(2 / 5,2,-1 / 5)$.

OR

(1) Obtain the necessary and sufficient condition for two spheres in R^{3} areorthogonal. Prove that the spheres $x^{2}+y^{2}+z^{2}-2 x+4 y+3=0$ and $x^{2}+y^{2}+z^{2}+4 x+6 y+2 z+5=0$ are orthogonal spheres.
(2) Find the equations of tangent planes to the sphere.
$x^{2}+y^{2}+z^{2}-4 x+2 y-4=0$ parallel to the plane $2 x-y+2 z=5$.
(B) Give the answer in short: (Any three)
(1) Why the equation $x^{2}+2 y^{2}+3 z^{2}-4 x+5 y+6 z=0$ does not generate a sphere?
(2) Write a parametric equations of sphere.
(3) If r_{1} and r_{2} are radii of two spheres with centres C_{1} and C_{2} respectively then under which condition two spheres intersect internally?
(4) Write a general equation of ellipsoid.
(5) Write a general equation of hyperboloid of one sheet.
4. (A) (1) In usual notation obtain the polar equation of a $\operatorname{conic} \frac{1}{r}=1+e \cos \theta$.
(2) If the Spherical co-ordinates of point A are $(2, \pi / 4, \pi / 6)$ in R^{3}, find its Cartesian and cylindrical co-ordinates.

OR

(1) Obtain the equation of an enveloping cone, having generator line touching sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and passing through a point (α, β, γ) in R^{3}.
(2) Find the equation of the cylinder whose generator line parallel to Z-axis and the guiding curve is $x^{2}+y^{2}+z^{2}=8, x+2 y+2 z=6$.
(B) Give the answer in short: (Any three)
(1) Find out the polar co-ordinates of the point having cartesian co-ordinates $(1,-\sqrt{3})$ in R^{2}.
(2) Which curve is represented by the polar equation $r \sin \theta=12-3 r$.
(3) Find Cartesian equation of a line $\mathrm{r} \cos (\theta-\pi / 4)=2 \sqrt{2}$.
(4) Define : A right circular cone.
(5) Write an equation of a right circular cylinder having axis parallel to Z-axis and passing through point (α, β, γ) and radius is r .

