Seat No. : _____

AB-114

April-2019

B.Sc., Sem.-II

CC-103 : Mathematics (Diff. Eq^{ns}. And Co-ordinate Geometry)

Time : 2:30 Hours]

[Max. Marks : 70

સ્યના : (1) આ પ્રશ્નપત્રમાં કુલ **ચા**ર પ્રશ્નો છે.
(2) જમણી બાજુના અંક જે-તે પ્રશ્ન/પેટા-પ્રશ્નના ગુણ દર્શાવે છે.
1. (A) (1) બર્નોલીનું વિકલ સમીકરણ લખો અને તેના ઉકેલની રીત સમજાવો.
(2) સમીકરણ ઉકેલો :
(i) (sin y - cos x) dx + (x cos y + sin y)dy = 0
(ii)
$$\frac{dy}{dx} - xy = x^3y^2$$

અથવા
(1) લાગ્રાંજનું વિકલ સમીકરણ ઉકેલવાની રીત સમજાવો તથા સમીકરણ p² - 6px + 3y = 0
નો ઉકેલ મેળવો.
(2) સમીકરણ ઉકેલો :
(i) p² - (x + 2y) p + y (x + y) = 0
(ii) x + y = $\left(\frac{1+p}{1-p}\right)^2$
(B) ટૂંકમાં જવાબ આપો : (ગમે તે **ચા**ર)
(1) વિકલ સમીકરણ $\left[1 + \left(\frac{dy}{dx}\right)^3\right]^{\frac{1}{2}} = \frac{d^2y}{dx^2}$ ની કક્ષા લખો.
(2) ઉદ્દગમબિંદુમાંથી પસાર થતી તમામ રેખાઓનું વિકલ સમીકરણ મેળવો.
(3) પ્રથમ કક્ષાના સમપરિમાણીય વિકલ સમીકરણનું ઉદાહરણ આપો.

- (4) ક્લેરોટનું વિકલ સમીકરણ લખો.
- (5) વિકલ સમીકરણ M(x, y) dx + N(x, y) dy = 0 યથાર્થ હોવા માટેની આવશ્યક અને પર્યાપ્ત શરત લખો.
- (6) વિકલ સમીકરણ (y xp)(p + 1) = p નો સામાન્ય ઉકેલ લખો.

AB-114

P.T.O.

2. (A) (1) સાબિત કરો :
$$\frac{1}{f(D^2)} \cos ax = \frac{\cos ax}{f(-a^2)}$$
; જ્યાં $f(-a^2) \neq 0$. $\frac{1}{D^2+4} \cos 3x$ નું
સાદુંરૂપ આપો.
(2) સમીકરણ ઉકેલો :
(i) $(D^4-6D^3+11D^2-6D)$ y = 0
(ii) $(D^2+3D-10)$ y = e^{2x}

અથવા

(1) સાબિત કરો :
$$\frac{1}{f(D)} e^{ax} V = e^{ax} \frac{1}{f(D+a)} V$$
; જ્યાં $f(D+a) \neq 0$ અને V એ ચલ x નું વિધેય છે.

- (2) સમીકરણ ઉકેલો :
 - (i) $(D+1)^2 y = x^2 e^x$
 - (ii) $(x^2D^2 2xD + 2) y = x^3$
- (B) ટૂંકમાં જવાબ આપો : (ગમે તે **ચાર**)

(1) સાદુંરૂપ આપો :
$$\frac{1}{D-1}x^2$$
.

(2) વિકલ સમીકરણ $(D^2 - 5D + 6)y = 0$ નો સામાન્ય ઉકેલ મેળવો.

(3) સાદુંરૂપ આપો :
$$\frac{1}{D-2}e^{2x}$$

(4)
$$\frac{1}{D^2 + a^2} \sin ax + \frac{1}{2} + \frac{1}{2}$$

- (5) જેનો સામાન્ય ઉકેલ $y = c_1 e^{ax} + c_2 e^{bx}$ હોય, તેવું વિકલ સમીકરણ મેળવો.
- (6) વિકલ સમીકરણ f(D)y = F(X) નું વિશિષ્ટ સંકલ મેળવવાનું સૂત્ર લખો.

AB-114

(2) Z-અક્ષને સમાંતર સર્જકરેખાવાળા નળાકારનો આધારવક $x^2 + y^2 + z^2 = 8$, x + 2y + 2z = 6 હોય, તો તે નળાકારનું સમીકરણ મેળવો.

3

AB-114

P.T.O.

- (B) ટૂંકમાં જવાબ આપો : (ગમે તે ત્રણ)
 - (1) $R^2 Hi (1, -\sqrt{3})$ કાર્તેઝીય યામવાળા બિંદુના ધ્રુવીય યામ શોધો.
 - (2) ધ્રુવીય સમીકરણ $r \sin \theta = 12 3r$ કર્યો વક્ર દર્શાવે છે ?
 - (3) રેખા $r\cos(\theta \pi/4) = 2\sqrt{2}$ નું કાર્તેઝીય સમીકરણ મેળવો.
 - (4) વ્યાખ્યા આપો : સમશંકુ
 - (5) Z-અક્ષને સમાંતર અને (α, β, γ) બિંદુમાંથી પસાર થતાં અક્ષવાળા અને r-ત્રિજ્યાવાળા સમનળાકારનું સમીકરણ લખો.

Seat No. : _____

AB-114

April-2019

B.Sc., Sem.-II

CC-103 : Mathematics (Diff. Eq^{ns}. And Co-ordinate Geometry)

Time : 2:30 Hours]

[Max. Marks : 70

Instructions :	(1)	There are four questions.
	(2)	Figure to the right indicate full marks of the question/ sub-question.

- 1. (A) (1) Write the Bernoulli's differential equation and explain the method of its solution. 7
 - (2) Solve the equations :
 - (i) $(\sin y \cos x) dx + (x \cos y + \sin y) dy = 0$
 - (ii) $\frac{dy}{dx} xy = x^3y^2$

OR

- (1) Explain the method to solve the Lagrange's differential equation. Also solve $p^2 6px + 3y = 0$.
- (2) Solve the equations:

(i)
$$p^2 - (x + 2y) p + y (x + y) = 0$$

(ii) $x + y = \left(\frac{1+p}{1-p}\right)^2$

- (B) Give the answer in short: (Any **four**)
 - (1) Write the order of the differential equation: 1+(

$$: \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right]^{\frac{1}{2}} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

- (2) Find the differential equation of all lines passing through origin.
- (3) Give an example of the homogeneous differential equation of first order.
- (4) Write the Clairaut's differential equation.
- (5) State the necessary and sufficient condition for the differential equation M(x, y) dx + N(x, y) dy = 0 to be exact.
- (6) Write a general solution of a differential equation (y xp)(p+1) = p.

4

2. (A) (1) Prove that : $\frac{1}{f(D^2)} \cos ax = \frac{\cos ax}{f(-a^2)}$; where $f(-a^2) \neq 0$. Also simplify $\frac{1}{D^2 + 4} \cos 3x$. 7

- (2) Solve the equations :
 - (i) $(D^4 6D^3 + 11D^2 6D) y = 0$
 - (ii) $(D^2 + 3D 10) y = e^{2x}$

OR

(1) Prove that :
$$\frac{1}{f(D)}e^{ax} V = e^{ax}\frac{1}{f(D+a)}V$$
; Where $f(D+a) \neq 0$ and V is

function of variable x.

- (2) Solve the equations :
 - (i) $(D+1)^2 y = x^2 e^x$
 - (ii) $(x^2D^2 2xD + 2) y = x^3$
- (B) Give the answer in short : (Any four)

(1) Simplify:
$$\frac{1}{D-1}x^2$$
.

(2) Obtain the solution of differential equation $(D^2 - 5D + 6) y = 0$.

(3) Simplify:
$$\frac{1}{D-2}e^{2x}$$

(4) Write the formula for
$$\frac{1}{D^2 + a^2} \sin ax$$
.

- (5) Find a differential equation whose general solution is $y = c_1 e^{ax} + c_2 e^{bx}$.
- (6) Write the formula to obtain particular integral of a differential equation f(D)y = F(X).

AB-114

4

- 3. (A) (1) Find the condition that the plane $lx + my + nz = p, p \neq 0$ touches the sphere $x^2 + y^2 + z^2 = a^2$. Also obtain the co-ordinates of the plane of contact. 7
 - (2) Prove that the spheres x² + y² + z² + 4x + 4y + 4z 13 = 0 and x² + y² + z² 20x 36y 14z + 73 = 0 touch each other externally. Also the point of contact is (2/5, 2, -1/5).

OR

(1) Obtain the necessary and sufficient condition for two spheres in \mathbb{R}^3 are orthogonal. Prove that the spheres $x^2 + y^2 + z^2 - 2x + 4y + 3 = 0$ and

 x^2 + y^2 + z^2 + 4x + 6y+2z + 5 = 0 are orthogonal spheres.

(2) Find the equations of tangent planes to the sphere.

$$x^{2}+y^{2}+z^{2}-4x+2y-4=0$$
 parallel to the plane $2x - y + 2z = 5$.

- (B) Give the answer in short: (Any three)
 - (1) Why the equation $x^2 + 2y^2 + 3z^2 4x + 5y + 6z = 0$ does not generate a sphere ?
 - (2) Write a parametric equations of sphere.
 - (3) If r_1 and r_2 are radii of two spheres with centres C_1 and C_2 respectively then under which condition two spheres intersect internally ?
 - (4) Write a general equation of ellipsoid.
 - (5) Write a general equation of hyperboloid of one sheet.
- 4. (A) (1) In usual notation obtain the polar equation of a conic $\frac{1}{r} = 1 + e \cos \theta$. 7
 - (2) If the Spherical co-ordinates of point A are $(2, \pi/4, \pi/6)$ in R³, find its Cartesian and cylindrical co-ordinates. 7

OR

- (1) Obtain the equation of an enveloping cone, having generator line touching sphere $x^2 + y^2 + z^2 = a^2$ and passing through a point (α , β , γ) in R³.
- (2) Find the equation of the cylinder whose generator line parallel to Z-axis and the guiding curve is $x^2 + y^2 + z^2 = 8$, x + 2y + 2z = 6.

AB-114

P.T.O.

3

- (B) Give the answer in short: (Any three)
 - (1) Find out the polar co-ordinates of the point having cartesian co-ordinates $(1, -\sqrt{3})$ in R².
 - (2) Which curve is represented by the polar equation $r \sin \theta = 12 3r$.
 - (3) Find Cartesian equation of a line r cos $(\theta \pi/4) = 2\sqrt{2}$.
 - (4) Define : A right circular cone.
 - (5) Write an equation of a right circular cylinder having axis parallel to Z-axis and passing through point (α, β, γ) and radius is r.