Seat No. : \qquad

MC-105

March-2019
B.Com., Sem.-V

CE-301 (B) : Advance Statistics-VII

(New Syllabus)

Time : 2:30 Hours]
[Max. Marks: 70

સૂચના : (1) જમણી બાજુના અંક પ્રશ્નના પૂરા ગુણ દર્શાવે છે.
(2) સાદા ગણનયંત્રનો ઉપયોગ કરી શકાશે.

1. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) જથ્થા નિયંત્રણ એટલે શું ? આર્થિક વ૨દી જથ્થો (EOQ) નું સૂત્ર મેળવો. 7
(ii) નીચેની માહિતી પરથી (i) EOQ અને (ii) કુલ વાર્ષિક ખર્ચ શોધો. 7 એકમની ખરીદ કિંમત ₹ 6,000 એકમ દીઠ એકમનો નિભાવ ખર્ચ ₹ 4,000 એકમ દીઠ દ૨ વર્ષે એકમનો અછત કિંમત ₹ 1,000 એકમ દીઠ
ઑર્ડ૨ મૂકવાનો ખર્ચ ₹ 8,000 ઓર્ડર દીઠ
વાર્ષિક માંગ 500 એકમો
અથવા
(i) જથ્થા નિયંત્રણ એટલે શું ? જથ્થા નિયંત્રણ પદ્વતિ સાથે જોડાયેલા જુદા-જુદા ખર્ચો સ્પષ્ટતાથી સમજાવો.
(ii) એક વસ્તુની સરે૨ાશ માસિક માંગ 15,000 એકમોની છે. નિભાવ ખર્ચ એકમ દીઠ કિંમતના 15% વર્ષ દીઠ અને ઓર્ડર મૂકવાનો ખર્ચ ₹ 1200 ઓર્ડર દીઠ છે. જો વસ્તુની ખરીદ કિંમત ₹ 300 એકમ દીઠ હોય અને જો 5,000 કે તેથી વધુ એકમોની ખરીદી પ૨ 10% કિંમતમાં ઘટાડો થતો હોય તો 10% નો ઘટાડો લેવો યોગ્ય ગણાય ?
(B) નીચેના પ્રશ્નોના જવાબ લબો. (કોઈૅપણ બે) 4
(i) જ્યારે એકમોની અછત માન્ય હોય ત્યારે આર્થિક વરદી જશ્થા મોડલલનું કુલ ખર્ચનું સૂત્ર લખો.
(ii) એક વસ્તુની વાર્ષિક માંગ 8000 એકમોની છે. વસ્તુનો નિભાવ ખર્ચ એકમ દીઠ ₹ 400 અને દરેક ઑર્ડ૨ મૂકવાનો ખર્ચ ₹ 800 હોય તો આર્થિક વરદી જથ્થો (EOQ) શોધો.
(iii) આર્થિક વરદી જથ્થો (EOQ) મોડેલની ધારણાઓ લખ.
2. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) કતા૨ (queue) નો પ્રશ્ન સમજાવો અને (M/M/1 : FIFO/ ∞) કતા૨ મૌડૈલ સમજાવો.
(ii) જો દિવસ દ૨મિયાન 25 ગ્રાહકો પોયશન વિતરણ મુજબ આવતા હોય અને દિવસ દ૨મિયાન 30 ગ્રાહકોને ઘાતાંકીય વિતરણ મુજબ સેવા મળતી હોય તો દિવસ દ૨મ્યાન સરેરાશ કેટલા ગ્રાહકો કતા૨માં હશે ? કતા૨ માળખામાં ઓછામાં ઓછી ત્રણ ગ્રાહકો હોય તેની સંભાવના શોધો.

અથવા

(i) કતા૨ (queue) નો પ્રશ્ન એટલે શું ? કતા૨ પદ્ધતિનું સામાન્ય માળખું સમજાવો.
(ii) જો આગમનો દ૨ 10 પ્રતિ કલાક અને ગ્રાહક દીઠ સરે૨ાશ 4 મિનિટનો સમય થતો હોય તો (i) કતા૨ માળખું વ્યસ્ત ન હોય તેની સંભાવના (ii) કતા૨માં ૨હેલા ગ્રાહકોની સરે૨ાશ સંખ્યા શોધો. (કતા૨ માળખામાં વધુમાં વધુ 4 ગ્રાહકો આવી શકે છે).
(B) નીચેના પ્રશ્નોના જવાબ લખો. (કોઈૅપણ બે)
(i) ટ્રાકિકની તીવ્રતા કતારના સિદ્ધાંતના સંદર્ભે સમજાવો.
(ii) એક સ્ટો૨માં એક જ કાઉન્ટ૨ છે, કાઉન્ટ૨ પ૨ દ૨ કલાકે સરે૨ાશા 4 ગ્રાહકો આવે છે અને કાઉન્ટ૨ પ૨ દ૨ કલાકે સરે૨ાશ 10 ગ્રાહકોને સેવા મળે છે. ગ્રાહકને કતા૨ માળખામાં લાગતો સરે૨ાશ સમય શોધો.
(iii) (M/M/1 : FIFO/N) કતાર મૉડેલ માટે, કતાર માળખામાં ' n ' ગ્રાહકો હોય તેની સંભાવનાનું સૂત્ર લખો.
3. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) ક્રમતાની સમસ્યા તેના ઉિપયોગો સહિત સમજાવો. ક્રમતાની સમસ્યાના ઉુકેલમાં ધ્યાનમાં લેવાતી ધારણાઓ લખો.
(ii) નીચેના કાર્યો ક૨વા માટે ઈீષ્ટતમ ક્રમ અને ત્રણ મશીનનો ફાજલ સમય શોધો :

કાર્યો	1	2	3	4	5	6	7	8
મશીન 1	8	10	12	11	9	5	10	7
મशીન 2	12	9	15	10	13	11	5	7
મशીન 3	17	16	18	19	20	22	21	20

અથવા
(i) ક્રમતાની સમસ્યા સમજાવો : 3 મશીન અને n કાર્યોની ક્રમતાની સમસ્યાના ઈீષ્ત્તમ ઉેકલની પ્રક્રિયા સમજાવો.
(ii) ત્રણ મશીનો A, B, C પ૨ "ABC" કમમાં નીચેના કાર્યો ક૨વાના છે. દરેક કાર્યને દરેક મશીન ૫૨ કાર્ય પુરુ ક૨વામાં લાગતો સમય (કલાકોમાં) નીચે મુજબ છે :

કાર્યો	1	2	3	4	5	6
મશીન A	15	13	18	16	15	20
મશીન B	9	12	8	7	5	6
મશીન C	10	15	8	11	6	9

તો આ કાર્યો ક૨વા માટેનો ઈீષતમ ક્રમ અને લાગતો ન્યૂન્ત્તમ સમય શોધો.
(B) નીચેના પ્રશ્નોના જવાબ લખો. (કોઈீપણ એક)
(i) 2 મશીનો અને n કાર્યોની ક્રમતાની સમસ્યાના ઈீષ્ટત્તમ ઉકકેની પ્રક્રિયા સમજાવો.
(ii) નીચેના કાર્યો ક૨વા માટેનો ઈீષ્ટત્તમ ક્રમ અને લાગતો ન્યૂનતત્તમ સમય શોધો :

કાર्यो	1	2	3	4	5	6	7
मशीન \mathbf{X}	42	45	35	39	42	40	36
मशીન \mathbf{Y}	29	25	30	24	29	28	27

4. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) વાહનવ્યવહારની સમસ્યા સમજાવી તેનું ગાણિતિક સ્વફૂ મેળવો.
(ii) નીચેની વાહનવ્યવહારની સમસ્યાનો ઈષષત્તમ ઉકેલ ન્યૂનતતતમ ખર્ચ માટે શोધો. 7

ઉત્પત્તિ સ્થાન પ્રાપ્તિસ્થાન	1	2	3	4	પुरवઠો
1	10	7	9	5	50
2	9	6	7	2	100
3	6	2	M	7	150
4	2	9	7	3	200
भांગ	125	75	150	150	

અથવા

(i) વાહનવ્યવહારની સમસ્યા સમજાવો અને તેના ઉ઼ેલ માટેની વાયવ્ય ખૂણાની રીત અને ન્યૂનનત્તમ ખર્ચની રીત વર્ણાવો.
(ii) નીચેની વાહનવ્યવહારની સમસ્યાનો ઈீષ્ટત્તમ Gકેલ મહત્તમ નફા માટે શોધો.

ઉત્પત્તિ સ્થાન પ્રાપ્તિસ્થાન	1	2	3	4	પुरवઠો
1	10	12	8	15	1000
2	9	12	17	10	1500
3	7	6	10	12	1500
भાંગ	2000	500	500	1000	

(B) નીચેના પ્રશ્નોના જવાબ લખો. (કોઈૅપણ ત્રણ)
(i) વાહનવ્યવહારની સમસ્યામાં મૂથભૂત પ્રાપ્ય ઉેકલ એટલે શું?
(ii) વાહનવ્યવહારની સમસ્યામાં વિકૃતતા (Degeneracy) એટલે શું ?
(iii) વાહનવ્યવહારની સમસ્યામાં પ્રતિબંધિત (Prohibited) માર્ગ એટલે શું ?
(iv) સંતુલિત (Balanced) વાહનવ્યવહારની સમસ્યા એટલે શું ?
(v) વાહનવ્યવહારની સમસ્યામાં વૈકલ્પિક (Alternative) ઉકેલ એટલે શું ?

Seat No. : \qquad

MC-105

March-2019

B.Com., Sem.-V

CE-301 (B) : Advance Statistics-VII
(New Syllabus)

Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) Figures to the right indicate the full marks of the questions.
(2) Use of simple calculator is allowed.

1. (A) Write the following :
(i) What is inventory control? Derive classical EOQ model formula.
(ii) Consider the following data :

Unit cost : ₹ 6,000 per unit
Carrying cost : ₹ 4,000 per unit per year
Stock-out cost : ₹ 1,000 per unit
Ordering cost : ₹ 8,000 per order
Annual demand : 500 units
Compute : (i) EOQ (ii) Overall annual cost

OR

(i) What is an inventory control system ? Explain clearly different costs that are involved in inventory control.
(ii) Monthly demand for a particular item is 15,000 units. Inventory carrying cost per unit per year is 15% of the cost of the units and ordering cost is $₹ 1200$ per order. The price quoted by the supplier is $₹ 300$ per unit. However, the supplier is willing to give discount of 10% for the order of 5,000 units or more. Is it worth-while to avail of discount offer?
(B) Write the following : (any two)
(i) Write the formula for total cost in EOQ model when shortages are allowed.
(ii) A particular item has demand of 8000 units per year. The holding cost per unit is ₹ 400 and the ordering cost is ₹ 800 per order. Determine the economic lot size. (EOQ)
(iii) Write the assumptions of EOQ model.
2. (A) Write the following :
(i) Explain the queuing problem. Explain (M/M/1: FIFO/ ∞) model.
(ii) If the arrival rate of a customer is approximately follows Poisson distribution with an average rate of 25 per day and the service time per customer follows an exponential distribution with mean 30 per day. What is average number of customers in the queue during the day? What is the probability of there are at least three customers in the system?

OR

(i) What is the queueing problem? Explain a general structure of the queueing system.
(ii) If the arrival rate is 10 per hour and service rate is 4 minutes per customer then calculate : (i) the probability that the system is free (ii) average number of customer in the queue, on the assumption that capacity of the system is limited to 4 customers only.
(B) Write the following: (any two)
(i) In context of queueing theory, explain traffic intensity.
(ii) A store has a single counter. Customers arrive at a rate of 4 customers per hour. The average numbers of customers that can be serviced at the counter is 10 customers per hour. Calculate average time a customer spends in the system.
(iii) Write the formula of probability of ' n ' customers in the system for (M/M/1 : FIFO/N) queue model.
3. (A) Write the following :
(i) Explain the sequence problem with its uses. Write the assumption of sequencing problem.
(ii) From the following table, find the optimal sequence of jobs to be processed and the minimum elapsed time.

Jobs	1	2	3	4	5	6	7	8
Machine 1	8	10	12	11	9	5	10	7
Machine 2	12	9	15	10	13	11	5	7
Machine 3	17	16	18	19	20	22	21	20

OR
(i) Explain the sequence problem. Explain the procedure for determining an optimum sequence for processing n items on three machines.
(ii) Find the sequence that minimizes the total elapsed time (in hours) required to complete the following jobs on 3 machines. A, B, and C in order " ABC ". Also find the minimum elapsed time.

Jobs	1	2	3	4	5	6
Machine A	15	13	18	16	15	20
Machine B	9	12	8	7	5	6
Machine C	10	15	8	11	6	9

(B) Write the following : (any one)
(i) Explain the procedure for determining an optimum sequence for processing n items on two machines.
(ii) Find the sequence that minimizes the total elapsed time required to complete the following tasks. Also find minimum elapsed time.

Jobs	1	2	3	4	5	6	7
Machine X	42	45	35	39	42	40	36
Machine Y	29	25	30	24	29	28	27

4. (A) Write the following :
(i) Explain transportation problem and give its mathematical form.
(ii) Obtain optimum solution of the following transportation problem for minimization.

Origins	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Supply
1	10	7	9	5	50
2	9	6	7	2	100
3	6	2	M	7	150
4	2	9	7	3	200
Demand	125	75	150	150	

OR
(i) Explain transportation problem and write steps of North West Corner Rule and Least Square Method to solve it.
(ii) Obtain optimum solution of the following transportation problem for maximization.
(B) Write the following: (any three)
(i) What do you mean by basic feasible solution in transportation problem?
(ii) What is degeneracy in transportation problem?
(iii) What is prohibited routes in transportation problem?
(iv) What is balanced transportation problem?
(v) What is alternative solution in transportation problem?
\qquad

MC-105

March-2019

B.Com., Sem.-V

CE-301 (B) : Advance Statistics-VII

(Old Syllabus)

Time : 2:30 Hours]
[Max. Marks : 70

સૂચના : (1) જમણી બાજુના અંક પ્રશ્નના પૂરા ગુણ દર્શાવે છે.
(2) સાદા ગણનયંત્રનો ઉપયોગ કરી શકાશે.

1. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) જથ્થા નિયંત્રણ એટલે શું ? આર્થિક વરદી જથ્થો (EOQ) નું સૂત્ર મેળવો.
(ii) નીચેની માહિતી પ૨થી (i) EOQ અને (ii) કુલ વાર્ષિક ખર્ચ શોધો.

એકમની ખરીદ કિંમત ₹ 6,000 એકમ દીઠ
એકમનો નિભાવ ખર્ચ ₹ 4,000 એકમ દીઠ દ૨ વર્ષે
એકમનો અછત કિંમત ₹ 1,000 એકમ દીઠ
ઑર્ડ૨ મૂકવાનો ખર્ચ ₹ 8,000 ઓર્ડર દીઠ
વાર્ષિક માંગ
500 એકમો
અથવા
(i) જથ્થા નિયંત્રણ એટલે શું ? જ્્થા નિયંત્રણ પદ્ધતિ સાથે જોડાયેલા જુદા-જુદા ખર્ચો સ્પષ્ટતાથી સમજાવો.
(ii) એક વસ્તુની સરેરાશ માસિક માંગ 15,000 એકમોની છે. નિભાવ ખર્ચ એકમ દીઠ કિંમતના 15% વર્ષ દીઠ અને ઓર્ડ૨ મૂકવાનો ખર્ચ ₹ 1200 ઓર્ડ૨ દીઠ છે. જો વસ્તુની ખરીદ કિંમત ₹ 300 એકમ દીઠ હોય અને જો 5,000 કે તેથી વધુ એકમોની ખરીદી પ૨ 10% કિંમતમાં ઘટાડો થતો હોય તો 10% નો ઘટાડો લેવો યોગ્ય ગણાય ?
(B) નીચેના પ્રશ્નોના જવાબ લખો. (કોઈીપણ બે)
(i) જ્યારે એકમોની અછત માન્ય હોય ત્યારે આર્થિક વરદી જશ્થા મોડેલનું કુલ ખર્ચનું સૂત્ર લખો.
(ii) એક વસ્તુની વાર્ષિક માંગ 8000 એકમોની છે. વસ્તુનો નિભાવ ખર્ચ એકમ દીઠ ₹ 400 અને દરેક ઑર્ડ૨ મૂકવાનો ખર્ચ ₹ 800 હોય તો આર્થિક વરદી જથ્થો (EOQ) શોધો.
(iii) આર્થિક વરદી જથ્થો (EOQ) મોડેલની ધારણાઓ લખો.
2. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) કતા૨ (queue) નો પ્રશ્ન સમજાવો અને (M/M/1 : FIFO/ ∞) કતા૨ મૌડૈલ સમજાવો.
(ii) જો દિવસ દ૨મિયાન 25 ગ્રાહકો પોયશન વિતરણ મુજબ આવતા હોય અને દિવસ દ૨મિયાન 30 ગ્રાહકોને ઘાતાંકીય વિતરણ મુજબ સેવા મળતી હોય તો દિવસ દ૨મ્યાન સરેરાશ કેટલા ગ્રાહકો કતા૨માં હશે ? કતા૨ માળખામાં ઓછામાં ઓછી ત્રણ ગ્રાહકો હોય તેની સંભાવના શોધો.

અથવા

(i) કતા૨ (queue) નો પ્રશ્ન એટલે શું ? કતા૨ પદ્ધતિનું સામાન્ય માળખુું સમજાવો.
(ii) જો આગમનો દ૨ 10 પ્રતિ કલાક અને ગ્રાહક દીઠ સરેરાશ 4 મિનિટનો સમય થતો હોય તો (i) કતા૨ માળખું વ્યસ્ત ન હોય તેની સંભાવના (ii) કતા૨માં ૨હેલા ગ્રાહકોની સરેરાશ સંખ્યા શોધો. (કતા૨ માળખામાં વધુમાં વધુ 4 ગ્રાહકો આવી શકે છે).
(B) નીચેના પ્રશ્નોના જવાબ લખો. (કોઈૅપણ બે)
(i) ટ્રાફિકની તીવ્રતા કતા૨ના સિદ્વાંતના સંદર્ભે સમજાવો.
(ii) એક સ્ટો૨માં એક જ કાઉન્ટ૨ છે, કાઉન્ટ૨ પ૨ દ૨ કલાકે સરે૨ાશા 4 ગ્રાહકો આવે છે અને કાઉન્ટ૨ પ૨ દ૨ કલાકે સરે૨ાશ 10 ગ્રાહકોને સેવા મળે છે. ગ્રાહકને કતા૨ માળખામાં લાગતો સરે૨ાશ સમય શોધો.
(iii) (M/M/1 : FIFO/N) કતા૨ મૉડિલ માટે, કતા૨ માળખામાં ' n ' ગ્રાહકો હોય તેની સંભાવનાનું સૂત્ર લખો.
3. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) ક્રમતાની સમસ્યા તેના ઉપપયોગો સહિત સમજાવો. ક્રમતાની સમસ્યાના ઉકકેલમાં ધ્યાનમાં લેવાતી ધારણાઓ લખો.
(ii) નીચેના કાર્યો ક૨વા માટે ઈ゚ષ્ટતમ ક્રમ અને ત્રણ મશીનનો ફાજલ સમય શોધો :

કાર્યો	1	2	3	4	5	6	7	8
મશીન 1	8	10	12	11	9	5	10	7
મशીન 2	12	9	15	10	13	11	5	7
મशીન 3	17	16	18	19	20	22	21	20

અથવા
(i) ક્રમતાની સમસ્યા સમજાવો : 3 મશીન અને n કાર્યોની ક્રમતાની સમસ્યાના ઈீષ્ટત્તમ ઉ૬કની પ્રક્રિયા સમજાવો.
(ii) ત્રણ મશીનો A, B, C પ૨ "ABC" ક્રમમાં નીચેના કાર્યો ક૨વાના છે. દરેક કાર્યને દરેક મશીન ૫૨ કાર્ય પુરુ ક૨વામાં લાગતો સમય (કલાકોમાં) નીચે મુજબ છે :

કાર્यो	1	2	3	4	5	6
મशीन A	15	13	18	16	15	20
મશીન B	9	12	8	7	5	6
મશીન C	10	15	8	11	6	9

તો આ કાર્યો ક૨વા માટેનો ઈீષ્ટતમ ક્રમ અને લાગતો ન્યૂનત્તમ સમય શોધો.
(B) નીચેના પ્રશ્નોના જવાબ લખો. (કોઈૅણ એક)
(i) 2 મશીનો અને n કાર્યોની ક્રમતાની સમસ્યાના ઈீષ્ત્તમ ઉેકેની પ્રક્રિયા સમજાવો.
(ii) નીચેના કાર્યો ક૨વા માટેનો ઈீષ્ટત્તમ ક્રમ અને લાગતો ન્યૂનત્તમ સમય શોધો :

કાર्यो	1	2	3	4	5	6	7
मशीन \mathbf{X}	42	45	35	39	42	40	36
मશીન \mathbf{Y}	29	25	30	24	29	28	27

4. (A) નીચેના પ્રશ્નોના જવાબ લખો.
(i) આલેખની ૨ીતે નીચેની ૨મતની સમસ્યા બેકેલો :

	व्यક્તि \mathbf{B}					
व्यક्ति \mathbf{A}	b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{6}$
$\mathbf{a}_{\mathbf{1}}$	3	2	-5	7	2	5
$\mathrm{a}_{\mathbf{2}}$	7	1	6	5	3	4

(ii) નીચેની ૨મતની સમસ્યા Gકેલો :

२मतवी々	B			
		b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$
A	a_{1}	-8	4	5
	a_{2}	2	-3	1
	a_{3}	-10	3	2
	a_{4}	1	-5	0
	a_{5}	0	-3	-2
Fथवा				

(i) આલેખની ૨ીતે નીચેની ૨મતની સમસ્યા ઉકેલો :
(B) નીચેના પ્રશ્નોના જવાબ લબો. (કોઈૅપણ એક)
(i) द्वિ-c્યક્તિ શૂન્ય સ૨વાળાની ૨મત સમજાવો.
(ii) ૨મતની સમસ્યા મુજબ મિશ્ર વ્યૂહ૨ચના અને શુદ્ધ વ્યૂહ૨ચના સમજાવો.

Seat No. : \qquad

MC-105

March-2019

B.Com., Sem.-V

CE-301 (B) : Advance Statistics-VII
(Old Syllabus)

Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) Figures to the right indicate the full marks of that question.
(2) Use of simple calculator is allowed.

1. (A) Write the following :
(i) What is inventory control ? Derive classical EOQ model.7
(ii) Consider the following data :

Unit cost : ₹ 6,000 per unit
Carrying cost : ₹ 4,000 per unit per year
Stock-out cost : ₹ 1,000 per unit
Ordering cost : ₹ 8,000 per order
Annual demand : 500 units
Compute : (a) EOQ (b) Overall annual cost

OR

(i) What is an inventory system ? Explain clearly different costs that are involved in inventory control.
(ii) Monthly demand for a particular item is 15,000 units. Inventory carrying cost per unit per year is 15% of the cost of the units and ordering cost is $₹ 1200$ per order. The price quoted by the supplier is $₹ 300$ per unit. However the supplier is willing to give discount of 10% for the order of 5,000 units or more. Is it worth-while to avail of discount offer ?
(B) Write the following : (any two)
(i) Write the formula for total cost in EOQ model when shortages are allowed.
(ii) A particular item has demand of 8000 units per year. The holding cost per unit is ₹ 400 and the ordering cost is ₹ 800 per order. Determine the economic lot size (EOQ).
(iii) Write the assumptions of EOQ model.
2. (A) Write the following :
(i) Explain the queueing problem. Explain (M/M/1: FIFO/ ∞) model.
(ii) If the arrival rate of a customer is approximately follows Poisson distribution with an average rate of 25 per day and the service time per customer follows an exponential distribution with mean 30 per day. What is average number of customers in the queue during the day? What is the probability if there are atleast three customers in the system?

OR

(i) What is the queueing problem? Explain a general structure of the queueing system.
(ii) If the arrival rate is 10 per hour and service rate is 4 minutes per customer then calculate : (i) the probability that the system is free (ii) average number of customer in the queue, on the assumption that capacity of the system is limited to 4 customers only.
(B) Write the following: (any two)
(i) In context of queueing theory, explain traffic intensity.
(ii) A store has a single counter. Customers arrive at a rate of 4 customers per hour. The average numbers of customers that can be serviced at the counter is 10 customers per hour. Calculate average time a customer spends in the system.
(iii) Write the formula of probability of n customers in the system for ($\mathrm{M} / \mathrm{M} / 1$: FIFO/N) queue model.
3. (A) Write the following :
(i) Explain the sequence problem with its uses. Write the assumption of sequencing problem.
(ii) From the following table, find the optional sequence of jobs to be processed and the minimum elapsed time.

Jobs	1	2	3	4	5	6	7	8
Machine 1	8	10	12	11	9	5	10	7
Machine 2	12	9	15	10	13	11	5	7
Machine 3	17	16	18	19	20	22	21	20

OR
(i) Explain the sequence problem. Explain the procedure for determining an optimum sequence for processing n items on three machines.
(ii) Find the sequence that minimizes the total elapsed time (in hours) required to complete the following jobs on 3 machines. A, B and C in order " ABC ". Also find the minimum elapsed time.

Jobs	1	2	3	4	5	6
Machine A	15	13	18	16	15	20
Machine B	9	12	8	7	5	6
Machine C	10	15	8	11	6	9

(B) Write the following : (any one)
(i) Explain the procedure for determining an optimum sequence for processing n items on two machines.
(ii) Find the sequence that minimizes the total elapsed time required to complete the following tasks. Also find minimum elapsed time.

Jobs	1	2	3	4	5	6	7
Machine X	42	45	35	39	42	40	36
Machine Y	29	25	30	24	29	28	27

4. (A) Write the following :
(i) Solve the following game graphically.

	Player B					
Player A	b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{6}$
$\mathbf{a}_{\mathbf{1}}$	3	2	-5	7	2	5
$\mathbf{a}_{\mathbf{2}}$	7	1	6	5	3	4

(ii) Solve the following game problem.

Player	B			
		b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$
	a_{1}	-8	4	5
	a_{2}	2	-3	1
	a_{3}	-10	3	2
	a_{4}	1	-5	0
	a_{5}	0	-3	-2
OR				

(i) Solve the following game graphically.

Player A	Player B	
	b_{1}	$\mathrm{~b}_{2}$
a_{1}	-5	2
a_{2}	2	-3
a_{3}	5	-1
a_{4}	2	3
a_{5}	-2	-5
a_{6}	-3	4

(ii) Solve the following game problem.

Player	B					
		b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{4}$	
\mathbf{A}	a_{1}	-5	-3	2	7	
	a_{2}	-2	-1	0	5	
	a_{3}	3	2	5	-6	

(B) Write the following: (any one)
(i) Explain two person zero sum game.
(ii) In context of game theory, explain mixed strategies and pure strategies.

