Seat No. : \qquad

MQ-109

March-2019

B.Com., Sem.-IV

CE-204 (B) : Statistics - VI
(Old Course)
Time : 2:30 Hours]
[Max. Marks : 70
સૂચના : (1) જમણી બાજુના અંક પ્રશ્નના ગુણ દર્શાવે છે.
(2) સાદા ગણનયંત્રનો ઉપયોગ કરી શકાશે.
(3) આલેખ પત્રો વિનંતી કરવાથી આપવામાં આવશે.

1. (a) (i) સુરેખ આયોજનની ધારણાઓ અને મર્યાદાઓ જણાવો.
(ii) પદો સમજાવો :
(1) હેતુલક્ષી વિધેય
(2) પ્રતિબંધો

અથવા

(i) આલેખની રીતનો ઉિપયોગ કરી નીચેની સુરેખ આયોજનની સમસ્યાનો ઉેકેલ મેળવો :

હેતુલક્ષી વિધેય $\mathrm{Z}=2 x_{1}+3 x_{2}$ ને નીચેની શરતોને આધીન લઘુત્તમ બનાવો :
શરતો: $x_{1}+x_{2} \leq 140$,
$x_{1}+x_{2} \geq 120$,
$x_{1} \leq 60$,
$x_{2} \leq 84$ अने
$x_{1}, x_{2} \geq 0$
(ii) એક કંપની ત્રણા વસ્તુઓ A, B, C બનાવે છે, જેનું ઉત્પાદન બે વિભાગો I અને IIમાં થાય છે. આ વસ્તુઓ માટે કંપની પાસે પૂરતી માગ છે, પણ ઉત્પાદન ક્ષમતા મર્યાદિત છે. જરૂી માહિતી નીચે પ્રમાણે છે :

વસ્તુઓ	વિભાગ I	વિભાગ II	પ્રતિ એકમ અપેક્ષિત નફો
A	60	3	2100
B	50	2	1600
C	40	1	1300
પ્રાપ્ય એકમો	4000	144	

આપેલી સમસ્યાને પ્રતિબંધોના સ્વરૂપમાં જણાવો, તેમજ તેનું હેતુલક્ષી વિધેય લખો.
(b) યોગ્ય વિકલ્પની પસંદગી કરી નીચેના પ્રશ્નોના જવાબો આપો : (કોઈૅપણ ચા૨)
(1) સુરેખ આયોજનની સમસ્યામાં $x_{1}, x_{2}, \ldots . x_{\mathrm{n}} \geq 0$ ને \qquad કહે છે.
(a) અનૃણ પ્રતિબંધ
(b) શૂન્ય શરત
(c) હેતુલક્ષી વિધેય
(d) એકપણ નહિ
(2) સુરેખ આયોજનના પ્રશ્નમાં ત્રણ કે તેથી વધુ ચલો હોય, તો \qquad પદ્ધતિ દ્વારા ఆકેલ મેળવાય છે.
(a) આલેખ
(b) સિમ્પ્લેક્ષ
(c) હંગેરીયન
(d) એકપણ નહિ
(3) સુરેખ આયોજનમાં પ્રાપ્ય ઉેકેલ સીમિત હોય ત્યારે ઈீષ્ટ ઉંકેલ હંમેશા \qquad એ મળે છે.
(a) કોઈૅપણ બિંદુ
(b) ઉગમ બિંદુ
(c) શिશેબिंदु
(d) બધા જ
(4) સુરેખ આયોજનના પ્રશ્નમાં મર્યાદિત સાધનોને \qquad દ્વારા ૨જૂ કરી શકાય છે.
(a) ઈீષ્ટ ઉૈકેલ
(b) હેતુલક્ષી વિધેય
(c) ऋ以
(d) સુરેખ અસમતાઓ
(5) $\mathrm{y} \geq 5 x$ અસમતાનો આલેખ \qquad માંથી પસાર થાય છે.
(a) $(0,0)$
(b) $(1,5)$
(c) $(4,20)$
(d) બધા જ
2. (a) (i) સુરેખ આયોજનની સમસ્યાના ઉેકેલ માટેની સિમ્પ્લેક્ષની રીત સમજાવો.
(ii) નીચેની સુરેખ આયોજનની સમસ્યાનો ઉકેલ સિમ્પ્લેક્ષની ૨ીતથી મેળવો :

હેતુલક્ષી વિધેય $\mathrm{Z}=3 x_{1}+2 x_{2}$ ને નીચેની શરતોને આધીન મહત્તમ બનાવો :
શ૨તો: $2 x_{1}+x_{2} \leq 5$,
$x_{1}+x_{2} \leq 3$,
અને $\quad x_{1}, x_{2} \geq 0$
અથવા
(i) નીચેના પદ સમજાવો :
(1) વૈકલ્પિક ઉેકેલ
(2) ચાવીરૂપ હાર
(3) અવાસ્તવિક ઉેકેલ
(ii) નીચેની સુરેખ આયોજનની સમસ્યાનો ઉેકેલ મેળવો :

હેતુલક્ષી વિધેય $\mathrm{Z}=5 x_{1}+10 x_{2}+8 x_{3}$ ને નીચેની શરતોને આધીન મહત્તમ બનાવો :
श२तो: $2 x_{1}+4 x_{2}+5 x_{3} \leq 100$,

$$
3 x_{1}+5 x_{2}+2 x_{3} \leq 60,
$$

$$
x_{1}+x_{2}+x_{3} \leq 18 \text { અને }
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

(b) નીચેના પ્રશ્નોના જવાબો આપો : (ગમે તે ચા૨)
(1) સિમ્પ્લેક્ષની ૨ીતમાં ચાવીફૂ હાર અને ચાવીફ૫ સ્તંભના છેદ ઘટકને \qquad તरُ'ક ઓળખવામાં આવે છે.
(2) સિમ્પ્લેક્ષની ૨ીતમાં પૂરક (ઘટ)/અતિ (વધ) ચલનો ઉપયોગ શા માટે થાય છે ?
(3) અસીમિત Єેકેલ એટલે શું ?
(4) જો $\Delta_{\mathrm{j}}=\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$ માં $\Delta_{\mathrm{j}} \leq 0$ થાય, તો ઉકેલ \qquad કહેવાય.
(5) સુરેખ આયોજનની આલેખની રીત ક્યારે ઉપયોગમાં લઈ ન શકાય ?
3. (a) (i) સુરેખ આયોજનની સમસ્યામાં દ્વંદ્વનો અર્થ ઉઢાહ૨ણ સહિત સમજાવો.
(ii) નીચેના પદો સમજવો :
(1) વિકૃત ઉેકેલ
(2) અસીમિત Gેક

અથવા

નીચેની સુરેખ આયોજનની સમસ્યાનો ઉેકે Big-M ની રીતે મેળવો.
હેતુલક્ષી વિધેય $\mathrm{Z}=5 x_{1}+6 x_{2}$ ને નીચેની શરતોને આધીન ન્યૂનતમ બનાવો :
शरतो: $2 x_{1}+5 x_{2} \geq 1500$,

$$
\begin{aligned}
& 3 x_{1}+x_{2} \geq 1200, \text { अને } \\
& x_{1}, x_{2}, \geq 0
\end{aligned}
$$

(b) નીચેના પ્રશ્નોના જવાબો આપો : (કોઈૅપણ ત્રણ)
(1) સિમ્પ્લેક્ષની ફીતમાં કૃત્રિમ ચલો એટલે શું ?
(2) સુરેખ આયોજનની સમસ્યામાં બે કરતાં વધુ ચલો હોય ત્યારે ઉકેલ કઈ રીત દ્વારા મેળવાય છे ?
(3) અવાસ્તવિક ઉેકલ એટલે શું?
(4) દ્વંદનો દવવદ એ સુરેખ આયોજનની સમસ્યામાં શું છે ?
(5) સુરેખ આયોજનની સમસ્યા માટેની કોઈૅપણ એક મર્યાદા લખો.
4. (a) (i) વાહનવ્યવહારની સમસ્યા એટલે શું ? અસમતોલ વાહનવ્યવહારનો પ્રશ્ન સમજાવો.
(ii) ઈૅષ્ટતમ ઉૈકેલ મેળવવાની MODIની રીત સમજાવો.

અથવા

નીચેના પરિવહન પ્રશ્નનો ઈீષ્ટતમ ઉિકેલ મેળવો :

	D_{1}	D_{2}	D_{3}	D_{4}	पुरवठो
O_{1}	5	8	3	6	30
O_{2}	4	5	7	4	50
O_{3}	6	2	4	5	40
भाંગ	30	20	40	30	120

(b) નીચેના પ્રશ્નોના જવાબો આપો : (કોઈૅપણ ત્રણ)
(1) જ્યારે પ્રતિબંધિત માર્ગ આપેલ હોય તેવા વાહનવ્યવહારની સમસ્યાનો ઉૈકેલ કેવી રીતે મેળવશો ?
(2) વાહનવ્યવહારની સમસ્યા એ સુરેખ આયોજનની સમસ્યા દ્વારા ઉેકેલી શકાય ?
(3) 7×8 વાહનવ્યવહા શ્રેણિાક માટે કેટલા સ્વતંત્ર ઉકેલો મેળવી શકાય ?
(4) MODIની ૨ીત વાપરવા માટેની પાયાની શ૨ત કઈ છે ?
(5) મહત્તમ વાહનવ્યવહારની સમસ્યાને ન્યૂનતમ વાહનવ્યવહારની સમસ્યામાં કેવી રીતે ફે૨વવામાં આવે છે ?

Seat No. : \qquad

MQ-109

March-2019

B.Com., Sem.-IV
 CE-204 (B) : Statistics - VI
 (Old Course)

Time : 2:30 Hours]
[Max. Marks: 70
Instructions : (1) Figures to the right indicate full marks.
(2) Use of simple calculator is allowed.
(3) Graph paper will be given on request.

1. (a) (i) Write the assumptions and limitations of linear programming. 7
(ii) Explain the terms :
(1) Objective function
(2) Constraints OR
(i) Use graphical method to solve the following L.P.P. :

Minimize $\quad Z=2 x_{1}+3 x_{2}$
Subject to $x_{1}+x_{2} \leq 140$,
$x_{1}+x_{2} \geq 120$,
$x_{1} \leq 60$,
$x_{2} \leq 84$ and
$x_{1}, x_{2} \geq 0$
(ii) A company produced three items $\mathrm{A}, \mathrm{B}, \mathrm{C}$ which are produced in two departments I and II. The company has sufficient demand for these items, but the production capacity is limited. The required information is as follows :

Item	Department I	Department II	Expected profit per item
A	60	3	2100
B	50	2	1600
C	40	1	1300
Available Units	4000	144	

Represent the above problem in the form of constraints and also write its objective function.
(b) Answer the following question selecting the proper alternative: (any four)
(1) In linear programming problem $x_{1}, x_{2}, \ldots . x_{\mathrm{n}} \geq 0$ are called \qquad
(a) Non-negative constraints
(b) Zero condition
(c) Objective function
(d) None of these
(2) If three or more variables are there in a linear programming problem then
\qquad method is used to solve it.
(a) Graphical
(b) Simplex
(c) Hungarian
(d) None of these
(3) In linear programming problem, the optimum solution of a bounded feasible region always exists at \qquad .
(a) any point
(b) origin
(c) vertex
(d) All of these
(4) The limited resources can be expressed in the form of \qquad in linear programming problem.
(a) optimum
(b) objective function
(c) negative
(d) linear inequalities
(5) The graph of $y \geq 5 x$ pass through \qquad .
(a) $(0,0)$
(b) $(1,5)$
(c) $(4,20)$
(d) All of these
2. (a) (i) Explain step by step procedure of solving LPP by simplex method.
(ii) Solve the following LPP by simplex method.

Maximize $\quad Z=3 x_{1}+2 x_{2}$
Subject to $2 x_{1}+x_{2} \leq 5$,

$$
\begin{gathered}
x_{1}+x_{2} \leq 3, \\
\text { and } \quad x_{1}, x_{2} \geq 0 \\
\text { OR }
\end{gathered}
$$

(i) Explain the following terms :
(1) Alternative solution
(2) Key row
(3) Infeasible solution
(ii) Solve the following linear programming problem :

Maximize $\quad \mathrm{Z}=5 x_{1}+10 x_{2}+8 x_{3}$
Subject to $2 x_{1}+4 x_{2}+5 x_{3} \leq 100$, $3 x_{1}+5 x_{2}+2 x_{3} \leq 60$, $x_{1}+x_{2}+x_{3} \leq 18$ and $x_{1}, x_{2}, x_{3} \geq 0$
(b) Answer the following questions: (any four)
(1) In simplex method, the element which is common to elements of key row and key column is called \qquad .
(2) For what purpose sluck/surplus variables are used in simplex method?
(3) What is unbounded solution?
(4) If $\Delta_{j}=C_{j}-Z_{j}$ in $\Delta_{j} \leq 0$, then solution is \qquad .
(5) When graphical method of solving LPP cannot be used ?
3. (a) (i) Explain the meaning of dual in LPP with illustration.
(ii) Explain the following terms :
(1) Degenerate solution
(2) Unbounded solution

OR
Solve the following L.P.P. by Big-M methods
Minimize $Z=5 x_{1}+6 x_{2}$
Subject to $2 x_{1}+5 x_{2} \geq 1500$,

$$
\begin{aligned}
& 3 x_{1}+x_{2} \geq 1200, \text { and } \\
& x_{1}, x_{2}, \geq 0
\end{aligned}
$$

(b) Answer the following questions: (any three)
(1) What is artificial variable in simplex method ?
(2) Give the name of method of solving linear programming problem involving more than two decision variables.
(3) What is infeasible solution?
(4) What is dual of dual in L.P.P.?
(5) Write any one limitation of L.P.P.
4. (a) (i) What is transportation problem ? Explain unbalanced transportation problem.
(ii) Explain modified distribution method for getting optimal solution.

OR
Obtain an optimal solution of T.P. :

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	5	8	3	6	30
O_{2}	4	5	7	4	50
O_{3}	6	2	4	5	40
Demand	30	20	40	30	120

(b) Answer the following questions: (any three)
(1) How to solve a transportation problem where a prohibited route is given?
(2) Can transportation problem be solved by L.P.P.
(3) How many independent solutions can be obtained in 7×8 transportation matrix ?
(4) What is the basic condition for applying MODI method ?
(5) Explain how the profit maximization transportation problem can be converted to an equivalent cost minimization transportation problem?

Seat No. : \qquad

MQ-109

March-2019

B.Com., Sem.-IV

CE-204 (B) : Statistics - VI

(New Course)

Time : 2:30 Hours]
[Max. Marks : 70
સૂચના : (1) જમણીી બાજુના અંક પ્રશ્નના ગુણ દર્શાવે છે.
(2) સાદા ગણનયંત્રનો ઉપયોગ કરી શકાશે.
(3) આલેખ પત્રો વિનંતી કરવાથી આપવામાં આવશે.

1. (a) (i) સુરેખ આયોજનની ધારણાઓ અને મર્યાદાઓ જણાવો.
(ii) પદો સમજાવો :
(1) હેતુલક્ષી વિધેય
(2) પ્રતિબંધો

અથવા

(i) આલેખની રીતનો ઉપપયોગ કરી નીચેની સુરેખ આયોજનની સમસ્યાનો ઉેકેલ મેળવો :

હેતુલક્ષી વિધેય $\mathrm{Z}=2 x_{1}+3 x_{2}$ ને નીચેની શ૨તોને આધીન લઘુત્તમ બનાવો :
શ૨તો: $x_{1}+x_{2} \leq 140$,
$x_{1}+x_{2} \geq 120$,
$x_{1} \leq 60$,
$x_{2} \leq 84$ અने
$x_{1}, x_{2} \geq 0$
(ii) એક કંપની ત્રણ વસ્તુઓ A, B, C બનાવે છે, જેનું ઉત્પાદન બે વિભાગો I અને IIમાં થાય છે. આ વસ્તુઓ માટે કંપની પાસે પૂરતી માંગ છે, પણ ઉત્પાદન ક્ષમતા મર્યાદિત છે. જરૂી માહિતી નીચે પ્રમાણે છે :

વસ્તુઓ	વિભાગ I	વિભાગ II	પ્રતિ એકમ અપેક્ષિત નફો
A	60	3	2100
B	50	2	1600
C	40	1	1300
પ્રાપ્ય એકમો	4000	144	

આપેલી સમસ્યાને પ્રતિબંધોના સ્વરૂપમાં જણાવો, તેમજ તેનું હેતુલક્ષી વિધેય લખો.
(b) યોગ્ય વિકલ્પની પસંદગી કરી નીચેના પ્રશ્નોના જવાબો આપો : (કોઈૅપણ ચા૨)
(1) સુરેખ આયોજનની સમસ્યામાં $x_{1}, x_{2}, \ldots . x_{\mathrm{n}} \geq 0$ ને \qquad કહે છે.
(a) અનૃણ પ્રતિબંધ
(b) શૂન્ય શરત
(c) હેતુલક્ષી વિધેય
(d) એકપણ નહિ
(2) સુરેખ આયોજનના પ્રશ્નમાં ત્રણ કે તેથી વધુ ચલો હોય, તો \qquad પદ્ધતિ દ્વારા ఆકેલ મેળવાય છે.
(a) આલેખ
(b) સિમ્પ્લેક્ષ
(c) હંગેરીયન
(d) એકપણ નહિ
(3) સુરેખ આયોજનમાં પ્રાપ્ય ઉેકેલ સીમિત હોય ત્યારે ઈீષ્ટ ઉકેલ હંમેશા \qquad એ મળે છે.
(a) કોઈૅપણ બિંદુ
(b) ઉગમ બિંદુ
(c) શिશેબिंदु
(d) બધા જ
(4) સુરેખ આયોજનના પ્રશ્નમાં મર્યાદિત સાધનોને \qquad દ્વારા ૨જૂ કરી શકાય છે.
(a) ઈீષ્ટ ઉૈકેલ
(b) હેતુલક્ષી વિધેય
(c) ऋ以
(d) સુરેખ અસમતાઓ
(5) $\mathrm{y} \geq 5 x$ અસમતાનો આલેખ \qquad માંથી પસાર થાય છે.
(a) $(0,0)$
(b) $(1,5)$
(c) $(4,20)$
(d) બધા જ
2. (a) (i) સુરેખ આયોજનની સમસ્યાના ઉેકેલ માટેની સિમ્પ્લેક્ષની રીત સમજાવો.
(ii) નીચેની સુરેખ આયોજનની સમસ્યાનો ઉકેલ સિમ્પ્લેક્ષની ૨ીતથી મેળવો :

હેતુલક્ષી વિધેય $\mathrm{Z}=3 x_{1}+2 x_{2}$ ને નીચેની શ૨તોને આધીન મહત્તમ બનાવો :
શ૨તો: $2 x_{1}+x_{2} \leq 5$,
$x_{1}+x_{2} \leq 3$,
અને $\quad x_{1}, x_{2} \geq 0$
અથવા
(i) નીચેના પદ સમજાવો :
(1) વૈકલ્પિક ઉેકલ
(2) ચાવીરૂપ હાર
(3) અવાસ્તવિક ઉેકેલ
(ii) નીચેની સુરેખ આયોજનની સમસ્યાનો બેકેલ મેળવો :

હેતુલક્ષી વિધેય $\mathrm{Z}=5 x_{1}+10 x_{2}+8 x_{3}$ ને નીચેની શરતોને આધીન મહત્તમ બનાવો :
शरतो: $\quad 2 x_{1}+4 x_{2}+5 x_{3} \leq 100$,

$$
3 x_{1}+5 x_{2}+2 x_{3} \leq 60,
$$

$$
x_{1}+x_{2}+x_{3} \leq 18 \text { અને }
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

(b) નીચેના પ્રશ્નોના જવાબો આપો : (ગમે તે ચા૨)
(1) સિન્પ્લેક્ષની રીતમાં ચાવીફૂ હાર અને યાવીફૂ સ્તંભના છેદ ઘટકને \qquad તरૈ'ક ઓળખવામાં આવે છે.
(2) સિમ્પ્લેક્ષની રીતમાં પૂરક (ઘટ)/અતિ (વધ) ચલનો ઉપયોગ શા માટે થાય છે ?
(3) અસીમિત Gેકેલ એટલે શું ?
(4) જો $\Delta_{\mathrm{j}}=\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$ માં $\Delta_{\mathrm{j}} \leq 0$ થાય, તो Gેકલ \qquad કહેવાય.
(5) સુરેખ આયોજનની આલેખની ફીત ક્યારે ઉપયોગમાં લઈ ન શકાય ?
3. (a) (i) સમાંતર શ્રેણીીીી વ્યાખ્યા આપો અને તેના n મા પદ તેમજ n પદોના સરવાળા મેળવવાના સૂત્રો જણાવો.
(ii) $3,9,27,81 \ldots \ldots$ નું 10 મું પદ અને પ્રथમ 10 પદોનો સરવાળો શોધો.

અથવા

(i) श्रेણી $350,345,340,335, \ldots$..નું 21 મું પદ અને પ્રथમ 21 પદનો સરવાળો શોધો.
(ii) નીચેની શ્રેણીી માટે n પદનો સરવાળો શોધો :

$$
8+88+888+8888+\ldots \ldots
$$

(b) નીચેના પ્રશ્નોના જવાબો આપો : (કોઈૅપણ ત્રણ)
(1) $\frac{1}{32},-\frac{1}{16}, \frac{1}{8}, \ldots \ldots$ नो सામાન્ય गुણો त्तर \qquad થશે.
(2) બે સંખ્યાઓ 17 અને 25 નો સમાંતર મધ્યક મેળવો.
(3) ચાર પદ ગુણોત્તર શ્રેણીમાં હોય, તો ચોથું પદ \qquad થશે.
(4) સમાંત૨ શ્રેણીના પ્રથમ n પદનો સ૨વાળો S_{n} હોય, તો તે પ૨થી $T_{n}=$ \qquad થાય.
(5) $2,8,32,128, \ldots \ldots$ नुં 7भुં પદ शोधો.
4. (a) (i) સમજાવો :
(1) $ढ$ ढाथ
(2) અંત:ખંડ
(ii) સાબિત કરો કે સુરેખાઓ $6 x-8 y=19$ અને $4 x+3 y+24=0$ એકબીજાને લંબ છે.

અથવા

(i) સુરેખા $9 x+5 y=13$ અને $6 x-5 y-17=0$ ના છેદનબિંદુમાંથી પસા૨ થતી સુરેખા $x+3 y=28$ ને સમાંતર હોય તેવી સુરેખાનું સમીકરણ મેળવો.
(ii) એક વસ્તુના x એકમો ઉત્પાહન ક૨વાનો ખર્ચ ₹ y છે. જો તે વસ્તુના 450 એકમો ઉત્પાદન ક૨વાનું ખર્ચ ₹ 1,500 હોય અને 750 એકમો ઉત્પાદન ક૨વાનો ખર્ચ ₹ 2,250 હોય, તો સ્થિ૨ ખર્ચ શોધો. તેમજ 1000 એકમો ₹ 5 ના ભાવે વેચવામાં આવે તો કેટલો નફો થશે ?
(b) યોગ્ય વિકલ્પની પસંદગી કરી નીચેના પ્રશ્નોના જવાબો આપો : (કોઈ゙પણ ત્રણ)
(1) ઉદ્ગમ બિંદુમાંથી પસા૨ થતી અને 3 ઢાળવાળી સુરેખાનું સમીક૨ણા મેળવો.
(a) $x-y=0$
(b) $3 x-y=0$
(c) $x-3 y=0$
(d) આપેલમાંથી એકપણ નહિ
(2) સુરેખા $7 x-5 y+35=0$ નો y-અક્ષ પ૨નો અંત:ખંડ \qquad છे.
(a) $\frac{7}{5}$
(b) $\frac{5}{7}$
(c) 5
(d) 7
(3) સુરેખા $3 x-8 y+24=0$ નો ઢાળ કેટલો થશે ?
(a) 3
(b) 8
(c) $-\frac{3}{8}$
(d) $\frac{3}{8}$
(4) જો બે સુરેખાઓ સમાંત૨ હોય, તો તેમના ઢાળ \qquad થશે.
(a) $=$
(b) $>$
(c) $<$
(d) \neq
(5) ઉદ્ગમ બિંદુમાંથી પસા૨ થતી સુરેખાનાં બંને અક્ષો પ૨નાં અંતઃખંડો \qquad થાય.
(a) સરખા નહિ
(b) પ૨સ્પ૨ વિરોધી
(c) शून्य
(d) આપેલમાંથી એકપણ નહિ

Seat No. : \qquad

MQ-109

March-2019

B.Com., Sem.-IV
 CE-204 (B) : Statistics - VI
 (New Course)

Time : 2:30 Hours]
[Max. Marks: 70
Instructions : (1) Figures to the right indicate full marks.
(2) Use of simple calculator is allowed.
(3) Graph paper will be given on request.

1. (a) (i) Write the assumptions and limitations of linear programming. 7
(ii) Explain the terms :
(1) Objective function
(2) Constraints

OR
(i) Use graphical method to solve the following L.P.P. :

Minimize $\quad Z=2 x_{1}+3 x_{2}$
Subject to $x_{1}+x_{2} \leq 140$,
$x_{1}+x_{2} \geq 120$,
$x_{1} \leq 60$,
$x_{2} \leq 84$ and

$$
x_{1}, x_{2} \geq 0
$$

(ii) A company produced three items $\mathrm{A}, \mathrm{B}, \mathrm{C}$ which are produced in two departments I and II. The company has sufficient demand for these items, but the production capacity is limited. The required information is as follows :

Item	Department I	Department II	Expected profit per item
A	60	3	2100
B	50	2	1600
C	40	1	1300
Available Units	4000	144	

Represent the above problem in the form of constraints and obtain its objective function.
(b) Answer the following question selecting the proper alternative : (any four)
(1) In linear programming problem $x_{1}, x_{2}, \ldots . x_{\mathrm{n}} \geq 0$ are called \qquad
(a) Non-negativity constraints
(b) Zero condition
(c) Objective function
(d) None of these
(2) If three or more variables are there in a linear programming problem then
\qquad method is used to solve it.
(a) Graphical
(b) Simplex
(c) Hungarian
(d) None of these
(3) In linear programming problem, the optimum solution of a bounded feasible region always exists at \qquad .
(a) any point
(b) origin
(c) vertex
(d) All of these
(4) The limited resources can be expressed in the form of \qquad in linear programming problem.
(a) optimum
(b) objective function
(c) negative
(d) linear inequalities
(5) The graph of $y \geq 5 x$ pass through \qquad .
(a) $(0,0)$
(b) $(1,5)$
(c) $(4,20)$
(d) All of these
2. (a) (i) Explain step by step procedure of solving L.P.P. by simplex method.
(ii) Solve the following L.P.P. by simplex method :

Maximize $\quad Z=3 x_{1}+2 x_{2}$
Subject to $2 x_{1}+x_{2} \leq 5$,

$$
x_{1}+x_{2} \leq 3,
$$

and

$$
x_{1}, x_{2} \geq 0
$$

OR

(i) Explain the following terms :
(1) Alternative solution
(2) Key row
(3) Infeasible solution
(ii) Solve the following linear programming problem :

Maximize $\mathrm{Z}=5 x_{1}+10 x_{2}+8 x_{3}$
Subject to $2 x_{1}+4 x_{2}+5 x_{3} \leq 100$,

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+2 x_{3} \leq 60 \\
& x_{1}+x_{2}+x_{3} \leq 18 \text { and } \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(b) Answer the following questions: (any four)
(1) In simplex method, the element which is common to elements of key row and key column is called \qquad .
(2) For what purpose sluck/surplus variables are used in simplex method?
(3) What is unbounded solution?
(4) If $\Delta_{j}=C_{j}-Z_{j}$ in $\Delta_{j} \leq 0$, then solution is \qquad .
(5) When graphical method of solving LPP cannot be used ?
3. (a) (i) Define arithmetic progression and give formula to find $\mathrm{n}^{\text {th }}$ term and sum of its first n terms.
(ii) Find the $10^{\text {th }}$ term and sum of first 10 terms of the series $3,9,27,81$
\qquad

OR

(i) Find the $21^{\text {st }}$ term and the sum of first 21 terms of the series $350,345,340$, $335, \ldots \ldots \ldots$
(ii) Find the sum of n term of the following series:
$8+88+888+8888+$ \qquad
(b) Answer the following questions: (any three)
(1) The common ratio of $\frac{1}{32},-\frac{1}{16}, \frac{1}{8}, \ldots \ldots \ldots$
(2) Find arithmetic mean of numbers 17 and 25.
(3) Four numbers are in G.P. the $4^{\text {th }}$ term is \qquad .
(4) If sum of first n terms of arithmetic progression is S_{n} then $T_{n}=$ \qquad .
(5) Find the $7^{\text {th }}$ term of the series :
$2,8,32,128, \ldots \ldots \ldots$
4. (a) (i) Explain :
(1) Slope
(2) Intercept
(ii) Prove that lines $6 x-8 y=19$ and $4 x+3 y+24=0$ are perpendicular.

OR

(i) Find equation of straight line passes through intersection of two lines $9 x+5 y=13$ and $6 x-5 y-17=0$ and parallel to $x+3 y=28$.
(ii) The cost of manufacturing x unit of an item is $₹ y$. If the cost of manufacturing 450 unit is $₹ 1,500$ and that of manufacturing 750 unit is ₹ 2,250 find fixed cost. Also find the profit, if 1000 units are sold at ₹ 5 per unit.
(b) Answer the following questions selecting the proper alternative: (any three)
(1) Find the equation of straight line passes through origin with slope 3
(a) $x-y=0$
(b) $3 x-y=0$
(c) $x-3 y=0$
(d) None of these
(2) The y-intercept of the line $7 x-5 y+35=0$ is \qquad
(a) $\frac{7}{5}$
(b) $\frac{5}{7}$
(c) 5
(d) 7
(3) The slope of the line $3 x-8 y+24=0$ is \qquad
(a) 3
(b) 8
(c) $-\frac{3}{8}$
(d) $\frac{3}{8}$
(4) If two lines are parallel, their slopes are
(a) $=$
(b) $>$
(c) $<$
(d) \neq
(5) The intercepts on both axis of a line, which passes through origin is
(a) Not equal
(b) Opposite
(c) Zero
(d) None of these

