Seat No. : \qquad
AE-102
April-2019

B.Com., Sem.-II

SE-102 : Adv. Statistics
(Operation Research)
(New Course)

Time : 2:30 Hours]
[Max. Marks: 70

સૂચના : (1) જમણી બાજુના અંક ગુણ દર્શાવે છે.
(2) સાદું ગણનયંત્ર વાપરી શકાશે.
(3) આલેખપત્ર વિનંતીથી આપવામાં આવશે.

1. (a) સુરેખ આયોજન એટલે શું ? તેની ઉપયોગિતા પણ જણાવો.

અથવા

નીચેનાં પદ સમજાવો :
(1) હેતુલક્ષી વિધેય
(2) પ્રતિબંધો
(3) ઈீષ્ટ પ્રાપ્ય ઉેકેલ
(b) હેતુલક્ષી વિધેય $Z=8 x+12 y$ ને નીચેની શ૨તોને આધીન મહત્તમ બનાવો.
$x \geq 0$,
$\mathrm{y} \geq 0$
$x+y \leq 9$
$x \geq 2$
$\mathrm{y} \geq 3$
$3 x+6 y \leq 36$
અથવા
આલેખની પદ્ધતિનો ઉપયોગ કરી નીચેની સુરેખ આયોજનની સમસ્યાનો ઉકેલ મેળવો.
$\mathrm{Z}=20 x+40 \mathrm{y}$ ને નીચેની શ૨તોને આધીન ન્યૂનતમ બનાવો.

$$
x \geq 0, \quad \mathrm{y} \geq 0
$$

$$
36 x+6 y \leq 108
$$

$$
3 x+12 y \geq 36
$$

$$
20 x+10 y \geq 100
$$

(c) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે બે)
(1) સમજાવો - કાર્યાત્મક સંશોધન
(2) સુરેખ આયોજનના પ્રશ્નના ઉંકેલ માટેની આલેખની પદ્ધતિની બે મર્યાદા જણાવો.
(3) સુરેખ આયોજનની સમસ્યાનું ગાણિતિક સ્વરૂપ સમજાવો.
(4) સુરેખ આયોજનના પ્રશ્નના ઉેકેલ માટેની બે ૨ીતના નામ જણાવો.
2. (a) વાહનવ્યવહારની સમસ્યા એટલે શું ? વાહનવ્યવહારની સમસ્યાનું ગાણિતીક સ્વરૂપ સમજાવો.

અથવા

વાહનવ્યવહા૨ની સમસ્યાના ઉકેલ માટેની ૨ીતો જણાવી, ગમે તે એક રીત સમજાવો.
(b) નીચેની વાહનવ્યવહારની સમસ્યાનો ઉકેલ વોગેલની ૨ીતનો ઉપયોગ કરીને શોધો અને પરિવહનનો કુલ ખર્ચ શોધો.

	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	पुरवઠो
$\mathbf{P}_{\mathbf{1}}$	190	300	500	100	70
$\mathbf{P}_{\mathbf{2}}$	700	300	400	600	90
$\mathbf{P}_{\mathbf{3}}$	400	100	600	200	180
भાંગ	50	80	70	140	340
અथવા					

નીચે આપેલ વાહનવ્યવહારની સમસ્યાનો ઉકેલ કોઈપણ બે રીત દ્વારા મેળવો તથા કુલ પરિવહન ખર્ચ મેળવો.

	I	II	III	IV	पुरवઠो
\mathbf{A}	5	10	6	13	10
\mathbf{B}	9	7	2	3	7
\mathbf{C}	3	11	8	13	3
भांग	6	7	5	2	20

(c) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે બે)
(1) અસમતોલ વાહનવ્યવહારની સમસ્યાને સમતોલ વાહનવ્યવહારની સમસ્યામાં કેવી ૨ીતે ફે૨વી શકાય ?
(2) વાહનવ્યવહારની સમસ્યાના પ્રારંભિક ઉેકેલ મેળવવાની રીતોના નામ જણાવો.
(3) એક વાહનવ્યવહારની સમસ્યાના 4 ઉ઼્ભવસ્થાનો અને 5 પ્રાપ્તિસ્થાનો હોય તો તેના કેટલા પ્રારંભિક ઉિકેલો શક્ય બને ?
(4) વાહનવ્યવહારની સમસ્યાનો મુખ્ય હેતું જણાવો.
3. (a) નિયુક્તિની સમસ્યા એટલે શું ? તેનું ગાણિતીીય સ્વફૂ સમજવો.

અથવા

ફેરબદલીની સમસ્યા વિષે નોંધ લખો.
(b) નફો મહત્તમ થાય તે ૨ીતે નીચેની નિયુક્તિની સમસ્યાનો ઉકેલ મેળવો.

सेલ્સમેન	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
I	11	12	13	14
II	14	15	16	17
III	15	16	17	18
IV	18	17	16	15
	અथवા			

એક યંત્રની કિંમત ₹ 8,000 છે. તેનો વાર્ષિક નિભાવ ખર્ચ અને દરેક વર્ષની પુન:વેચાણ કિંમત નીચે આપેલ છે. કેટલા વર્ષે યંત્રને બઠલવું જોઈએ તે માટેનો તમારો અભિપ્રાય આપો :

વર્ષ	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
નિભાવ ખર્ચ	1000	1200	1500	1800	2400	3000
પુનઃ વેચાણ કિંમત	5500	5000	4600	4000	3200	3000

(c) આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો :
(1) \qquad ની સમસ્યા માટે હંગેરિયન પદ્વતિ વડે ઉકેલ મેળવવામાં આવે છે.
(a) વાહનવ્યવહાર
(b) નિયુક્તિ
(c) સુુેખ આયોજન
(d) ફેરબદલી
(2) \qquad ન્યૂનતમ હોય તે વર્ષ ફેરબદલી માટે ઈષ્ટ ગણ઼વામાં આવે છે.
(a) કુલ ખર્ચ
(b) સરેરાશ કુલ ખર્ચ
(c) નિભાવ ખર્ચ
(d) સંચયી નિભાવ ખર્ચ
(3) નિયુક્તિની સમસ્યામાં હાર અને સ્તંભની સંખ્યા \qquad હોય.
(a) સમાન
(b) અસમાન
(c) સમાન અથવા અસમાન
(d) ત્રણ પૈકી એકપણ નહીં
4. (a) (i) પર્ટ અને સી.પી.એમ. વચ્ચેનો તફાવત સમજાવો.
(ii) સમજાવો - અપેક્ષિત સમય

અથવા

પર્ટના સંદર્ભમાં નીચેના ૫દ સમજાવો :
પ્રવૃત્તિ, કાલ્પનિક પ્રવૃત્તિ, કટોકટીપૂર્ણ માર્ગ, ફાજલ સમય
(b) નીચેની યોજના માટે કટોકટીપૂર્ણ માર્ગ નક્કી કરો અને EST, LST, EFT, LFT અને ફાજલ સમય નક્કી કરો :

કાર્ય	$1-2$	$2-3$	$2-4$	$3-4$	$3-5$	$4-5$	$5-6$
સમય (કલાકમાં)	10	15	5	8	2	10	6

અથવા

નીચેની યોજના માટે પર્ટ નકશો તૈયા૨ કરી કટોકટીપૂર્ણ માર્ગ શોધો :

પ્રવૃત્તિ	भાર્ગ	આશાવાદી સમય	સૌથી વધુ સંભવિત સમય	નિરાશાવાદી સમય
A	1-2	6	6	24
B	1-3	6	12	18
C	1-4	12	12	30
D	2-5	6	6	6
E	3-5	12	30	48
F	4-6	12	30	42
G	5-6	18	30	54

(c) આપેલાં વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો :
(1) કટોકટીપૂર્ણ માર્ગ પ૨ આવતી પ્રવૃત્તિઓનો ફાજલ સમય \qquad હોય છે.
(a) ધન
(b) ઋણ
(c) 0 (शून्य)
(d) અનિશ્ચિત
(2) પર્ટ નકશામાં કાલ્પનિક પ્રવૃત્તિને \qquad દ્વારા દર્શાવાય છે.
(a) ત્રુટક તી૨
(b) ત્રુટક રેખા
(c) સળંગ તી૨
(d) એકપણ નહીં
(3) એક પ્રવૃત્તિ માટે $\mathrm{EST}=20$, પ્રવૃત્તિ માટેનો સમય $=5$ અને ફાજલ સમય $=5$ હોય તો LFT $=$ \qquad -
(a) 25
(b) 30
(c) 35
(d) એકપણ નહીં
\qquad

AE-102

April-2019

B.Com., Sem.-II
 SE-102 : Adv. Statistics
 (Operation Research)
 (New)

Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) Figures to the right indicate marks.
(2) Simple calculator is allowed.
(3) Graph paper will be given request.

1. (A) What is linear programming ? Also give its uses.

OR

Explain following terms :
(1) Objective function
(2) Constraints
(3) Optimum Feasible Solution
(B) Maximize the objective function $\mathrm{Z}=8 x+12 \mathrm{y}$ subject to the following constraints.
$x \geq 0$
$\mathrm{y} \geq 0$
$x+y \leq 9$
$x \geq 2$
$\mathrm{y} \geq 3$
$3 x+6 y \leq 36$

OR

Solve the following linear programming problem by using the graphical method.
Minimize $Z=20 x+40 y$
Subject to,

$$
\begin{aligned}
& x \geq 0, \quad y \geq 0 \\
& 36 x+6 y \leq 108 \\
& 3 x+12 y \geq 36 \\
& 20 x+10 y \geq 100
\end{aligned}
$$

(C) Answer the following: (any Two)
(1) Define Operations Research
(2) Give two limitations of graphical method of solving linear programming problem.
(3) Explain mathematical formulation of linear programming problem.
(4) State the name of methods for solving linear programming problem.
2. (A) What is transportation problem ? Explain its mathematical form?

OR

State different method for solving transportation problem. Explain any one of them.
(B) Solve the following transportation problem by using Vogel's method. Also find total transportation cost.

	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	Supply
$\mathbf{P}_{\mathbf{1}}$	190	300	500	100	70
$\mathbf{P}_{\mathbf{2}}$	700	300	400	600	90
$\mathbf{P}_{\mathbf{3}}$	400	100	600	200	180
Demand	50	80	70	140	340

OR

Solve the following transportation problem by using any two method. Also find total transportation cost.

	I	II	III	IV	Supply
A	5	10	6	13	10
B	9	7	2	3	7
C	3	11	8	13	3
Demand	6	7	5	2	20

(C) Answer the following questions: (any Two)
(1) How to convert unbalanced transportation problem into balanced transportation problem?
(2) Which are the methods for obtaining initial solutions to given transportation problem?
(3) A transportation problem having 4 origin and 5 destinations. How many initial solutions are possible?
(4) Write main goal of Transportation problem.
3. (A) What is assigment problem? Explain its mathematical form.

OR
Write short note for Replacement theory.
(B) Solve the following assignment problem so as to maximize the profit :

Profit (₹)

Salesman	P	\mathbf{Q}	\mathbf{R}	S
I	11	12	13	14
II	14	15	16	17
III	15	16	17	18
IV	18	17	16	15
	OR			

A machine costs ₹ 8,000 . Its annual maintenance cost and resale price for every year are given below. Give your comment at which year its is advisable to replace the machine.

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Maintenance cost	1000	1200	1500	1800	2400	3000
Resale Value	5500	5000	4600	4000	3200	3000

(C) Fill in the blanks by selecting correct option from the given options.
(1) Hungarian method is used to solve \qquad problem.
(a) Transportation
(b) Assignment
(c) Linear programming
(d) Replacement
(2) The best year for replacement is the one where \qquad is minimum.
(a) total cost
(b) average total cost
(c) maintenance cost
(d) cumulative maintenance cost
(3) In assignment problem no. of rows and column must be \qquad .
(a) equal
(b) unequal
(c) equal or unequal
(d) None of these
4. (A) (1) Explain the difference between PERT and CPM.
(2) Explain : Expected Time

OR

Explain the following term with reference to PERT :
Activity, Dummy activity, Critical path, Float Time
(B) Determine critical path for the following project. Determine EST, LST, EFT, LFT and Float time :

Activity	$1-2$	$2-3$	$2-4$	$3-4$	$3-5$	$4-5$	$5-6$
Time (in hours)	10	15	5	8	2	10	6

OR

Draw PERT chart for the following project and determine critical path :

Activity	Route	Optimistic Time	Most Likely Time	Pessimistic Time
A	$1-2$	6	6	24
B	$1-3$	6	12	18
C	$1-4$	12	12	30
D	$2-5$	6	6	6
E	$3-5$	12	30	48
F	$4-6$	12	30	42
G	$5-6$	18	30	54

(C) Fill in the blanks by selecting correct option from the given options :
(1) Float time for any activity on critical path is \qquad .
(a) Positive
(b) Negative
(c) 0 (zero)
(d) Indefinite
(2) In PERT diagram, Dummy Activity is represented by \qquad .
(a) Dotted Arrow
(b) Dotted line
(c) Straight Arrow
(d) None of these
(3) For an Activity EST $=20$, Time for Activity $=5$ and Float Time $=5$, find LFT $=$ \qquad .
(a) 25
(b) 30
(c) 35
(d) None of these
\qquad

AE-102

April-2019
B.Com., Sem.-II

SE-102 : Adv. Statistics
(Operation Research)
(Old Course)

Time : 2:30 Hours]
[Max. Marks : 70

સૂચના : (1) જમણી બાજુના અંક ગુણ દર્શાવે છે.
(2) સાદું ગણનયંત્ર વાપરી શકાશે.
(3) આલેખપત્ર વિનંતીથી આપવામાં આવશે.

1. (a) સુરેખ આયોજન એટલે શું ? તેની ઉપયોગિતા પણ જણાવો.

અથવા
નીચેનાં પદ સમજાવો :
(1) હેતુલક્ષી વિધેય
(2) પ્રતિબંધો
(3) ઈீષ્ટ પ્રાપ્ય ઉકેલ
(b) હેતુલક્ષી વિધેય $\mathrm{Z}=8 x+12 y$ ને નીચેની શ૨તોને આધીન મહત્તમ બનાવો.
$x \geq 0$,
$\mathrm{y} \geq 0$
$x+y \leq 9$
$x \geq 2$
$\mathrm{y} \geq 3$
$3 x+6 y \leq 36$

અથવા

આલેખની પદ્ધતિનો ઉપયોગ કરી નીચેની સુરેખ આયોજનની સમસ્યાનો ઉકેલ મેળવો.
$\mathrm{Z}=20 x+40 \mathrm{y}$ ને નીચેની શ૨તોને આધીન ન્યૂનતમ બનાવો.

$$
x \geq 0, \quad \mathrm{y} \geq 0
$$

$$
36 x+6 y \leq 108
$$

$$
3 x+12 y \geq 36
$$

$$
20 x+10 y \geq 100
$$

(c) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે બે)
(1) સુરેખ આયોજનના પ્રશ્નના ઉેકેલ માટેની આલેખની પદ્ધતિની બે મર્યાદા જણાવો.
(2) સુરેખ આયોજનની સમસ્યાનું ગાણિતિિ સ્વરૂપ સમજાવો.
(3) સુરેખ આયોજનના પ્રશ્નના ઉેકેલ માટેની બે રીતના નામ જણાવો.
2. (a) વાહનવ્યવહારની સમસ્યા એટલે શું ? વાહનવ્યવહારની સમસ્યાનું ગાણિતીક સ્વરૂપ સમજાવો.

અથવા

વાહનવ્યવહારની સમસ્યાના ઉકેલ માટેની ૨ીતો જણાવી, ગમે તે એક રીત સમજાવો.
(b) નીચેની વાહનવ્યવહારની સમસ્યાનો ઉકેલ વોગેલની ૨ીતનો ઉપયોગ કરીને શોધો અને પરિવહનનો કુલ ખર્ચ શોધો.

	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	पुरवठो
$\mathbf{P}_{\mathbf{1}}$	190	300	500	100	70
$\mathbf{P}_{\mathbf{2}}$	700	300	400	600	90
$\mathbf{P}_{\mathbf{3}}$	400	100	600	200	180
भांग	50	80	70	140	340

અથવા
નીચે આપેલ વાહનવ્યવહારની સમસ્યાનો ઉેકેલ કોઈીપણ બે રીત દ્વારા મેળવો તથા પરિવહન ખર્ચ મેળવો.

	I	II	III	IV	पुरवठो
\mathbf{A}	5	10	6	13	10
\mathbf{B}	9	7	2	3	7
\mathbf{C}	3	11	8	13	3
भાંગ	6	7	5	2	20

(c) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે બે)
(1) વાહનવ્યવહારની સમસ્યાના પ્રારંભિક ઉેકેલ મેળવવાની રીતોના નામ જણાવો.
(2) એક વાહનવ્યવહારની સમસ્યાના 4 ઉદ્ભવસ્થાનો અને 5 પ્રાપ્તિસ્થાનો હોય તો તેના કેટલા પ્રારંભિક ઉૈકેલો શક્ય બને ?
(3) વાહનવ્યવહારની સમસ્યાનો મુખ્ય હેતું જણાવો.
3. (a) નિયુક્તિની સમસ્યા એટલે શું ? તેનું ગાણિતીીય સ્વરૂપ સમજાવો.

અથવા

ફેરબદલીની સમસ્યા વિષે નોંધ લખો.
(b) નફો મહત્તમ થાય તે રીતે નીચેની નિયુક્તિની સમસ્યાનો ઉેકલ મેળવો.
નફો (₹)

सेલ્સમેન	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
I	11	12	13	14
II	14	15	16	17
III	15	16	17	18
IV	18	17	16	15

અથવા
એક યંત્રની કિંમત ₹ 8,000 છે. તેનો વાર્ષિક નિભાવ ખર્ચ અને દરેક વર્ષની પુનઃવેચાણા કિંમત નીચે આપેલ છે. કેટલા વર્ષે યંત્રને બદલવું જોઈએ તે માટેનો તમારો અભિપ્રાય આપો :

વર્ષ	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
નિભાવ ખર્ચ	1000	1200	1500	1800	2400	3000
પુન: વેચાણા કિંમત	5500	5000	4600	4000	3200	3000

(c) આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો :
(1) _્_ ની સમસ્યા માટે હંગેરિયન પદ્ધતિ વડે ઉેકેલ મેળવવામાં આવે છે.
(a) વાહનવ્યવહા૨
(b) નિયુક્તિ
(c) સુરેખ આયોજન
(d) ફેરબદલી
(2) ન્ય્યૂનતમ હોય તે વર્ષ ફેરબદલી માટે ઈષષટ ગણવામાં આવે છે.
(a) કુલ ખર્ચ
(b) સરેરાશ કુલ ખર્ચ
(c) નિભાવ ખર્ચ
(d) સંચયી નિભાવ ખર્ચ
(3) નિયુક્તિની સમસ્યામાં હાર અને સ્તંભની સંખ્યા \qquad હોય.
(a) સમાન
(b) અસમાન
(c) સમાન અથવા અસમાન
(d) ત્રણ પૈકી એકપણ નહીં
4. (a) (i) પર્ટ અને સી.પી. એમ. વચ્ચેનો તફાવત સમજાવો.
(ii) સમજાવો - અપેક્ષિત સમય

પર્ટના સંઢર્ભમાં નીચેના પદ સમજાવો :
પ્રવૃત્તિ, કાલ્પનિક પ્રવૃત્તિ, કટોકટીપૂર્ણ માર્ગ, ફાજલ સમય
(b) નીચેની યોજના માટે કટોકટીપૂર્ણ માર્ગ નક્કી કરો અને EST, LST, EFT, LFT અને ફાજલ સમય નક્કી કરો :

કાર્ય	$1-2$	$2-3$	$2-4$	$3-4$	$3-5$	$4-5$	$5-6$
સમય (કલાકમાં)	10	15	5	8	2	10	6

અથવા

નીચેની યોજના માટે પર્ટ નકશો તૈયા૨ કરી કટોકટીપૂર્ણ માર્ગ શોધો :

પ્રવૃત્તિ	भાર્ગ	આશાવાદી સમય	સૌથી વધુ સંભવિત સમય	નિરાશાવાદી સમય
A	1-2	6	6	24
B	1-3	6	12	18
C	1-4	12	12	30
D	2-5	6	6	6
E	3-5	12	30	48
F	4-6	12	30	42
G	5-6	18	30	54

(c) આપેલાં વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો :
(1) કટોકટીપૂર્ણ માર્ગ પ૨ આવતી પ્રવૃત્તિઓનો ફાજલ સમય \qquad હોય છે.
(a) ધન
(b) ઋણ
(c) 0 (शून्य)
(d) અનિશ્ચિત
(2) પર્ટ નકશામાં કાલ્પનિક પ્રવૃત્તિને \qquad દ્વારા દર્શાવાય છે.
(a) ત્રુટક તી૨
(b) ત્રુટક રેખા
(c) સળંગ તી૨
(d) એકપણ નહીં
(3) એક પ્રવૃત્તિ માટે $\mathrm{EST}=20$, પ્રવૃત્તિ માટેનો સમય $=5$ અને ફાજલ સમય $=5$ હોય તો LFT = \qquad -
(a) 25
(b) 30
(c) 35
(d) એકપણ નહીં
\qquad

AE-102

April-2019

B.Com., Sem.-II
 SE-102 : Adv. Statistics
 (Operation Research)
 (Old Course)

Time : 2:30 Hours]
[Max. Marks : 70

Instructions : (1) Figures to the right indicate marks.
(2) Simple calculator is allowed.
(3) Graph paper will be given request.

1. (A) What is linear programming ? Also give its uses.

OR

Explain following terms :
(1) Objective function
(2) Constraints
(3) Optimum Feasible Solution
(B) Maximize the objective function $\mathrm{Z}=8 x+12 \mathrm{y}$ subject to the following constraints.
$x \geq 0$
$\mathrm{y} \geq 0$
$x+y \leq 9$
$x \geq 2$
$\mathrm{y} \geq 3$
$3 x+6 y \leq 36$

OR

Solve the following linear programming problem by using the graphical method.
Minimize $Z=20 x+40 y$
Subject to,

$$
\begin{aligned}
& x \geq 0, \quad y \geq 0 \\
& 36 x+6 y \leq 108 \\
& 3 x+12 y \geq 36 \\
& 20 x+10 y \geq 100
\end{aligned}
$$

(C) Answer the following: (any Two)
(1) Give two limitations of graphical method of solving linear programming problem.
(2) Explain mathematical formulation of linear programming problem.
(3) State the name of two methods for solving linear programming problem.
2. (A) What is transportation problem ? Explain its mathematical form.

OR

State different method for solving transportation problem. Explain any one of them.
(B) Solve the following transportation problem by using Vogel's method. Also find total transportation cost.

	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	Supply
$\mathbf{P}_{\mathbf{1}}$	190	300	500	100	70
$\mathbf{P}_{\mathbf{2}}$	700	300	400	600	90
$\mathbf{P}_{\mathbf{3}}$	400	100	600	200	180
Demand	50	80	70	140	340
OR					

Solve the following transportation problem by using any two method. Also find total transportation cost.

	I	II	III	IV	Supply
A	5	10	6	13	10
B	9	7	2	3	7
C	3	11	8	13	3
Demand	6	7	5	2	20

(C) Answer the following questions: (any Two)
(1) Which are the methods for obtaining initial solutions to given transportation problem ?
(2) A transportation problem having 4 origin and 5 destinations. How many initial solutions are possible?
(3) Write main goal of Transportation problem.
3. (A) What is assignment problem? Explain its mathematical form.

OR

Write short note for Replacement theory.
(B) Solve the following assignment problem so as to maximize the profit :

Profit (₹)

| Salesman | \mathbf{P} | \mathbf{Q} | \mathbf{R} | S |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | 11 | 12 | 13 | 14 |
| II | 14 | 15 | 16 | 17 |
| III | 15 | 16 | 17 | 18 |
| IV | 18 | 17 | 16 | 15 |
| | OR | | | |

A machine costs ₹ 8,000 . Its annual maintenance cost and resale price for every year are given below. Give your comment at which year its is advisable to replace the machine.

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Maintenance cost	1000	1200	1500	1800	2400	3000
Resale Value	5500	5000	4600	4000	3200	3000

(C) Fill in the blanks by selecting correct option from the given options.
(1) Hungarian method is used to solve \qquad problem.
(a) Transportation
(b) Assignment
(c) Linear programming
(d) Replacement
(2) The best year for replacement is the one where \qquad is minimum.
(a) total cost
(b) average total cost
(c) maintenance cost
(d) cumulative maintenance cost
(3) In assignment problem no. of rows and column must be \qquad .
(a) equal
(b) unequal
(c) equal or unequal
(d) None of these
4. (A) (1) Explain the difference between PERT and CPM.
(2) Explain : Expected Time

OR

Explain the following term with reference to PERT :
Activity, Dummy activity, Critical path, Float Time
(B) Determine critical path for the following Project. Determine EST, LST, EFT, LFT and Float time :

Activity	$1-2$	$2-3$	$2-4$	$3-4$	$3-5$	$4-5$	$5-6$
Time (in hours)	10	15	5	8	2	10	6

OR

Draw PERT chart for the following Project and determine Critical Path :

Activity	Route	Optimistic Time	Most Likely Time	Pessimistic Time
A	$1-2$	6	6	24
B	$1-3$	6	12	18
C	$1-4$	12	12	30
D	$2-5$	6	6	6
E	$3-5$	12	30	48
F	$4-6$	12	30	42
G	$5-6$	18	30	54

(C) Fill in the blanks by selecting correct option from the given options :
(1) Float time for any activity on critical path is \qquad .
(a) Positive
(b) Negative
(c) 0 (zero)
(d) Indefinite
(2) In PERT diagram, Dummy Activity is represented by \qquad .
(a) Dotted Arrow
(b) Dotted line
(c) Straight Arrow
(d) None of these
(3) For an Activity EST $=20$, Time for Activity $=5$ and Float Time $=5$, find LFT $=$ \qquad .
(a) 25
(b) 30
(c) 35
(d) None of these

