Seat No. : \qquad

AD-106

April-2019
B.Com., Sem.-II

CE-102 : Advance Statistics
(Operation Research)
(Old Course)

Time : 2:30 Hours]
[Max. Marks: 70

સૂચના : (1) જમણી બાજુના અંક ગુણ દર્શાવે છે.
(2) સાદું ગણનયંત્ર વાપરી શકાશે.
(3) આલેખપત્ર વિનંતીથી આપવમાં આવશે.

1. (A) સુરેખ આયોજન એટલે શું ? સુરેખ આયોજનની સમસ્યાનું ગાણિતિક સ્વરૂપ લખો.

અથવા
સુરેખ આયોજનની ઉપયોગિતા જણાવો.
(B) હેતુલક્ષી વિધેય $Z=2 x+y$ ને નીચેની શરતોને આધીન રહી મહત્તમ બનાવો :
$x \geq 0, \mathrm{y} \geq 0$
$x+2 y \leq 10$
$x+y \leq 6$
$x-y \leq 2$
$x-2 y \leq 1$

અથવા

આંકડાશાર્ર્રનું પ્રશ્નપત્ર વિભાગ-A અને વિભાગ-Bમાં વહેંચાયેલા છે. વિભાગ-A ના દરેક પ્રશ્નના 5 ગુણ છે અને તેનો ઉકેલ મેળવવામાં 4 મિનિટ લાગે છે. વિભાગ-Bમાં દરેક પ્રશ્નના 6 ગુણ છે અને તેનો ઉકેલ મેળવવામાં 6 મિનિટ લાગે છે. પેપ૨ માટેનો કુલ સમય 1 કલાક છે અને કુલ 12 પ્રશ્નોના જવાબ આપવાના છે. આલેખની પદ્ધતિનો ઉપયોગ કરીને મહત્તમ ગુણ મેળવવા માટે દરેક વિભાગમાંથી કેટલા પ્રશ્નોના જવાબ આપવા જોઈએ ?
(C) યોગ્ય વિકલ્પ પસંદ કરી નીચેના જવાબ આપો :
(1) સુરેખ આયોજનમાં $x \geq 0$ અને $y \geq 0$ ને \qquad કહે છે.
(a) અનૃણ પ્રતિબંધ
(b) શૂન્ય શ૨ત
(c) હેતુલક્ષી વિધેય
(d) એકપણ નહીં
(2) સુરેખ આયોજન સર્વપ્રથમ \qquad દ્વારા શોધવામાં આવે છે.
(a) કાર્લ પિયર્સન
(b) જ્યોર્જ બી. ડાન્ટઝિંગ
(c) न्यूटૂન
(d) એકપણ નહીં
(3) સુરેખ આયોજનની સમસ્યામાં નિર્ણયાત્મક ચલોની અસમાનતાઓને \qquad કહેવાય છे.
(a) હેતુલક્ષી વિધેય
(b) મૂળભૂત ઉેકેલ
(c) ઈよ્ટ ઉેકેલ
(d) પ્રતિબંધો
(4) $x \geq 3$ નો આલેખ \qquad રેખા અને તેની \qquad બાજુ હોય છે.
(a) સમક્ષિતિજ, જમણી
(b) શિરોલંબ, જમણી
(c) સમક્ષિતિજ, ડાબી
(d) શિરોલંબ, ડાબી
2. (A) વાહનવ્યવહારની સમસ્યાનો ઉકેલ મેળવવાની ન્યૂનૂમ શ્રેણિકની રીત વર્ણવો.

અથવા
વાહનવ્યવહારીી સમસ્યા એટલે શું ? વાહનવ્યવહારીી સમસ્યાનું ગાણિતિિ સ્વરૂપ સમજાવો.
(B) કોઈીપણ બે રીતોનો ઉિપયોગ કરીને નીચેની વાહનવ્યવહારની સમસ્યાનો પ્રારંભિક મૂળભૂત પ્રાપ્ય ઉેકલ મેળવો :

પ્રાપ્તિસ્થાન

ઉદ્ભવસ્થાન	A	B	C	D	E	પुरવઠो
P	5	7	6	8	9	20
Q	9	8	10	4	11	35
R	10	12	9	7	8	40
S	6	6	7	8	8	15
માંગ	15	10	20	30	35	110

નીચેની વાહનવ્યવહારની સમસ્યાનો ઉેકલ વોગેલની પદ્ધતિથી મેળવો :

	P	Q	R	S	પુરવઠો
A	15	13	10	9	15
B	6	7	12	5	16
C	7	10	11	14	10
D	18	16	12	15	9
भાંગ	7	8	15	20	50

(C) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે બે)
(1) વાહનવ્યવહારની સમસ્યાના પ્રારંભિક ઉ૬ેલ મેળવવાની શીતોનાં નામ જણાવો.
(2) વાહનવ્યવહારની સમસ્યાનો મુખ્ય હેતુ જણાવવો.
(3) 4×3 ક્રમના વાહનવ્યવહારના શ્રેણિ|કના કુલ કેટલા સ્વતંત્ર ઉકેલ મળે ?
3. (A) નિયુક્તિની સમસ્યાના ઉકેલ માટેની હંગેરિયન પદ્ધતિ જણાવો.

અથવા

ફેરબદલીની સમસ્યા વિશે ટૂંકનોંધ લખો.
(B) નીચેની સમસ્યા માટે નફો મહ્ત્તમ આવે તે રીતે નિયુક્તિ આપો :
યંત્રો

વ્યક્તિઓ	P	Q	R	S	T
I	32	38	40	28	40
II	40	24	28	21	36
III	41	27	33	30	37
IV	22	38	41	36	36
v	29	33	40	35	39

(i) ખર્ચ ન્યૂનતમ આવે તે ૨ીતે નીચેની નિયુક્તિની સમસ્યા ઉકેલો :

મશીન			
કાર्यो	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
$\mathbf{A}_{\mathbf{1}}$	8	5	13
$\mathbf{A}_{\mathbf{2}}$	5	6	11
$\mathbf{A}_{\mathbf{3}}$	7	11	9

(ii) એક યંત્રની કિંમત ₹ 10,000 છે. તેનો પ્રથમ વર્ષનો નિભાવ ખર્ચ ₹ 300 છે. પછી દરેક વર્ષે નિભાવ ખર્ચ ₹ 1,000 વધતો જાય છે. તો કેટલાં વર્ષ બાઢ યંત્રની ફેરબદલી ક૨વી જોઈઈએ ?
(C) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે ત્રણા)
(1) નિયુક્તિની સમસ્યાનો મુખ્ય હેતુ જણાવો.
(2) વાહનવ્યવહારની સમસ્યા અને નિયુક્તિની સમસ્યા વચ્ચેનો મુખ્ય તફાવત જણાવો.
(3) ફેરબદલીની સમસ્યાની ધારણા જણાવો.
(4) નિયુક્તિની સમસ્યામાં હાર અને સ્તંભની સંખ્યા \qquad હોય છે.
(5) નિયુક્તિની સમસ્યામાં નિયુક્ત એકમો $x_{i j}$ ની કિંમત \qquad હોય છે.
4. (A) પર્ટના ફાયદા અને મર્યાદા જણાવો.

અથવા

પર્ટ અને સીપીએમ વશ્ચ્ચેનો તફાવત સમજાવો.
(B) નીચેની યોજના માટે ઢરેક પ્રવૃત્તિનો ફાજલ સમય નક્કી કરો :

प्रवृत्ति	$1-2$	$2-3$	$3-4$	$3-5$	$4-6$	$5-6$	$6-7$
सभય	2	4	3	2	4	3	8
अथवा							

નીચેની યોજના માટે પર્ટ નકશો તૈયા૨ કરી કટોકટીપૂર્ણ માર્ગ શોધો :

प्रवृત్ति	1-2	1-3	1-4	2-5	3-5	4-6	5-6
આશાવાદી સમય	12	12	18	6	24	18	27
નિરશશાવાદી સમય	18	12	24	6	36	36	45
સૌથી વધુ સંભવિત સમય	6	12	12	6	30	30	30

(C) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે ત્રણા)
(1) કટોકટીપૂર્ણ માર્ગ પ૨ આવતી પ્રવૃત્તિઓનો ફાજલ સમય \qquad હોય છે.
(2) પર્ટના સંદર્ભમાં કાલ્પનિક પ્રવૃત્તિ સમજાવો.
(3) કટોકટીનો માર્ગ એટલે શું ?
(4) કોઈ એક પ્રવૃત્તિ માટે EST $=20$, કોઈ પ્રવૃત્તિનો સમય $=5$, ફાજલ સમય $=5$ હોય તો LFT शोधો.
\qquad

AD-106

April-2019
B.Com., Sem.-II

CE-102 : Advance Statistics
(Operation Research)
(Old Course)

Time : 2:30 Hours]
[Max. Marks: 70
Instructions : (1) Figures to the right indicate marks.
(2) Simple calculator is allowed.
(3) Graph paper will be given on request.

1. (A) What is Linear Programming and write the Mathematical form of a Linear Programming problem.

OR
Write the uses of Linear Programming.
(B) Maximize $\mathrm{Z}=2 x+y$ under the following constraints.
$x \geq 0, \mathrm{y} \geq 0$
$x+2 y \leq 10$
$x+y \leq 6$
$x-y \leq 2$
$x-2 y \leq 1$

OR

The question paper of statistics is divided in two sections A and B. Each question of section A carries 5 marks and 4 minutes are required to solve it. Each question of section B carries 6 marks and 6 minutes are required to solve it. The time limit given for the examination is of 1 hour and in all answers of maximum 12 questions are to be given. How many questions are to be attempted from each section to get maximum marks by using graphical method ?
(C) Fill in the blanks by selecting correct option from the given options :
(1) In linear programming $x \geq 0$ and $y \geq 0$ are called \qquad .
(a) Non-negativity constraints
(b) Zero condition
(c) Objective function
(d) None of these
(2) Linear Programming was first introduced by \qquad .
(a) Karl Pearson
(b) George B. Dantzing
(c) Newton
(d) None of these
(3) The inequalities for decision variables in a linear programming problem are called \qquad .
(a) objective function
(b) basic solution
(c) optimum solution
(d) constraints
(4) The graph of $x \geq 3$ is a \qquad line and \qquad side of it.
(a) horizontal, right
(b) vertical, right
(c) horizontal, left
(d) vertical, left
2. (A) Explain matrix minimum method for solving transportation problem.

OR

What is transportation problem ? Explain its mathematical form.
(B) Find initial basic feasible solutions of the following transportation problem by using any two methods.

Destinations

Origins	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	Supply
\mathbf{P}	5	7	6	8	9	20
\mathbf{Q}	9	8	10	4	11	35
\mathbf{R}	10	12	9	7	8	40
S	6	6	7	8	8	15
Demand	$\mathbf{1 5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{1 1 0}$
			OR			

Solve the following transportation problem by using Vogel's method :

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	S	Supply
\mathbf{A}	15	13	10	9	15
B	6	7	12	5	16
C	7	10	11	14	10
D	18	16	12	15	9
and	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{5 0}$

(C) Answer the following questions: (any two)

4
(1) Which are the methods for obtaining initial solution to given transportation problem?
(2) Write main goal of transportation problem.
(3) For a transportation matrix of order 4×3, how many number of independent solution will be there ?
3. (A) Explain Hungarian method for solving assignment problem.

OR

Write short note for Replacement Theory.
(B) Solve the following assignment problem to maximize profit :

Machine

Person	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}
I	32	38	40	28	40
II	40	24	28	21	36
III	41	27	33	30	37
IV	22	38	41	36	36
V	29	33	40	35	39
	OR				

(i) Solve the following Assignment problem so as to minimize the cost :

	Machine		
Job	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
	8	5	13
$\mathbf{A}_{\mathbf{1}}$	8	6	11
$\mathbf{A}_{\mathbf{2}}$	5	7	9
$\mathbf{A}_{\mathbf{3}}$	7	11	

(ii) The price of a machine is ₹ 10,000 . Its maintenance expense is ₹ 300 for the first year and then it increase by ₹ 1,000 per year. At what time it is possible to replace the machine?
(C) Answer the following questions: (any three)
(1) Write main objective of assignment problem.
(2) What is main difference between transportation problem and assignment problem?
(3) Under which assumptions we discuss replacement problem.
(4) In assignment problem no. of rows and column must be \qquad .
(5) In assignment problem the value of allocated units $X_{i j}$ is \qquad .
4. (A) Give the advantages and limitations of PERT.

OR

Explain the difference between PERT and CPM.
(B) Determine float time for each of the following activities :

Activity	$1-2$	$2-3$	$3-4$	$3-5$	$4-6$	$5-6$	$6-7$
Time	2	4	3	2	4	3	8
OR							

Prepare PERT chart and find critical path for the project :

Activity	$1-2$	$1-3$	$1-4$	$2-5$	$3-5$	$4-6$	$5-6$
Optimistic time	12	12	18	6	24	18	27
Pessimistic time	18	12	24	6	36	36	45
Most likely time	6	12	12	6	30	30	30

(C) Answer the following : (any three)
(1) Float time for any activity on critical path is \qquad .
(2) Explain the dummy activity with reference to PERT.
(3) What do you mean by critical path ?
(4) For an activity $\mathrm{EST}=20$, time for an activity $=5$, Float time is 5 , then find LFT.
\qquad

AD-106

April-2019

B.Com., Sem.-II

CE-102 : Advance Statistics
 (Operation Research)
 (New Course)

Time : 2:30 Hours]
[Max. Marks : 70

સૂચના : (1) જમણી બાજુના અંક ગુણ દર્શાવે છે.
(2) સાદું ગણનયંત્ર વાપરી શકાશે.
(3) આલેખપત્ર વિનંતીથી આપવમાં આવશે.

1. (A) સુરેખ આયોજન એટલે શું ? સુરેખ આયોજનની સમસ્યાનું ગાણિતિિ સ્વરૂ૫ લખો.

અથવા

સુરેખ આયોજનની ઉપયોગિતા જણાવો.
(B) હેતુલક્ષી વિધેય $Z=2 x+y$ ને નીચેની શ૨તોને આધીન રહી મહત્તમ બનાવો :

$$
\begin{aligned}
& x \geq 0, y \geq 0 \\
& x+2 y \leq 10 \\
& x+y \leq 6 \\
& x-y \leq 2 \\
& x-2 y \leq 1
\end{aligned}
$$

અથવા

આંકડાશાસ્ર્રનું પ્રશ્નપત્ર વિભાગ-A અને વિભાગ-Bમાં વહેંચાયેલા છે. વિભાગ-A ના દરેક પ્રશ્નના 5 ગુણ છે અને તેનો ઉેકલ મેળવવામાં 4 મિનિટ લાગે છે. વિભાગ-Bમાં દરેક પ્રથ્નના 6 ગુણ છે અને તેનો ઉકેલ મેળવવામાં 6 મિનિટ લાગે છે. પેપ૨ માટેનો કુલ સમય 1 કલાક છે અને કુલ 12 પ્રશ્નોના જવાબ આપવાના છે. આલેખની પદ્ધતિનો ઉપપયોગ કરીને મહત્તમ ગુણ મેળવવા માટે દરેક વિભાગમાંથી કેટલા પ્રશ્નોના જવાબ આપવા જોઈએ ?
(C) યોગ્ય વિકલ્પ પસંદ કરી નીચેના જવાબ આપો :
(1) સુરેખ આયોજનમાં $x \geq 0$ અને $y \geq 0$ ને \qquad કહે છે.
(a) અનૃણ પ્રતિબંધ
(b) શૂન્ય શ૨ત
(c) હેતુલક્ષી વિધેય
(d) એકપણ નહીં
(2) સુરેખ આયોજન સર્વપ્રથમ \qquad દ્વારા શોધવામાં આવે છે.
(a) કાર્લ પિયર્સન
(b) જ્યોર્જ બી. ડાન્ટઝિંગ
(c) न्यूटૂન
(d) એકપણ નહીં
(3) સુરેખ આયોજનની સમસ્યામાં નિર્ણયાત્મક ચલોની અસમાનતાઓને \qquad કહેવાય છे.
(a) હેતુલક્ષી વિધેય
(b) મૂળભૂત ઉેકેલ
(c) ઈよ્ટ ઉેકેલ
(d) પ્રતિબંધો
(4) $x \geq 3$ નો આલેખ \qquad રેખા અને તેની \qquad બાજુ હોય છે.
(a) સમક્ષિતિજ, જમણી
(b) શિરોલંબ, જમણી
(c) સમક્ષિતિજ, ડાબી
(d) શિરોલંબ, ડાબી
2. (A) વાહનવ્યવહારની સમસ્યાનો ઉૈકેલ મેળવવાની ન્યૂનતત શ્રેણિકની રીત વર્ણવો.

અથવા
વાહનવ્યવહારીી સમસ્યા એટલે શું ? વાહનવ્યવહારીી સમસ્યાનું ગાણિતિિ સ્વરૂપ સમજાવો.
(B) કોઈીપણ બે રીતોનો ઉિપયોગ કરીને નીચેની વાહનવ્યવહારની સમસ્યાનો પ્રારંભિક મૂળભૂત પ્રાપ્ય ઉેકલ મેળવો :

પ્રાપ્તિસ્થાન

ઉદ્ભવસ્થાન	A	B	C	D	E	પુરaઠો
P	5	7	6	8	9	20
Q	9	8	10	4	11	35
R	10	12	9	7	8	40
S	6	6	7	8	8	15
માંગ	15	10	20	30	35	110

નીચેની વાહનવ્યવહારની સમસ્યાનો બેકેલ વોગેલની પદ્ધતિથી મેળવો :

	P	Q	R	S	પुरवઠો
A	15	13	10	9	15
B	6	7	12	5	16
C	7	10	11	14	10
D	18	16	12	15	9
भांગ	7	8	15	20	50

(C) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે બે)
(1) સમતોલ વાહનવ્યવહારની સમસ્યા એટલે શું ?
(2) વાહનવ્યવહારની સમસ્યાના પ્રારંભિક Gકેલ મેળવવાની રીતોનાં નામ જણાવો.
(3) વાહનવ્યવહારની સમસ્યાનો મુખ્ય હેતુ જણાવો.
(4) 4×3 ક્રમના વાહનવ્યવહારના શ્રેણિકના કુલ કેટલા સ્વતંત્ર ઉકેલ મળે ?
3. (A) નિયુક્તિની સમસ્યાના ઉકેલ માટેની હંગેરિયન પદ્ધતિ જણાવો.

અથવા
ફેરબદલીની સમસ્યા વિશે ટૂંકનોંધ લખો.
(B) નીચેની સમસ્યા માટે નફો મહત્તમ આવે તે ૨ીતે નિયુક્તિ આપો :

યંત્રો

व્યક્તિओ	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}
I	32	38	40	28	40
II	40	24	28	21	36
III	41	27	33	30	37
IV	22	38	41	36	36
V	29	33	40	35	39
अथवા					

(i) ખર્ચ ન્યૂનતમ આવે તે ૨ીતે નીચેની નિયુક્તિની સમસ્યા ઉકેલો :

મશીન			
કાર્યो	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
	\mathbf{A}_{1}	5	13
$\mathbf{A}_{\mathbf{2}}$	5	6	11
\mathbf{A}_{3}	7	11	9

(ii) એક યંત્રની કિંમત ₹ 10,000 છે. તેનો પ્રથમ વર્ષનો નિભાવ ખર્ચ ₹ 300 છે. પછી દરેક વર્ષે નિભાવ ખર્ચ ₹ 1,000 વધતો જાય છે. તો કેટલાં વર્ષ બાદ યંત્રની ફેરબદલી ક૨વી જોઈઈએ ?
(C) નીચેના પ્રશ્નોના જવાબ આપો : (ગમે તે ત્રણા)
(1) નિયુક્તિની સમસ્યાનો મુખ્ય હેતુ જણાવો.
(2) વાહનવ્યવહારની સમસ્યા અને નિયુક્તિની સમસ્યા વચ્ચેનો મુખ્ય તફાવત જણાવો.
(3) ફેરબદલીની સમસ્યાની ધારણા જણાવો.
(4) નિયુક્તિની સમસ્યામાં હાર અને સ્તંભની સંખ્યા \qquad હોય છે.
(5) નિયુક્તિની સમસ્યામાં નિયુક્ત એકમો $x_{i j}$ ની કિંમત \qquad હોય છે.
4. (A) પર્ટના ફાયદા અને મર્યાદા જણાવો.

અથવા

પર્ટ અને સીપીએમ વશ્ચ્ચેનો તફાવત સમજાવો.
(B) નીચેની યોજના માટે ઢરેક પ્રવૃત્તિનો ફાજલ સમય નક્કી કરે :

प्रवृत्ति	$1-2$	$2-3$	$3-4$	$3-5$	$4-6$	$5-6$	$6-7$
सभય	2	4	3	2	4	3	8
अथवा							

નીચેની યોજના માટે પર્ટ નકશો તૈયા૨ કરી કટોકટીપૂર્ણ માર્ગ શોધો :

પ્રવૃત્તિ	1-2	1-3	1-4	2-5	3-5	4-6	5-6
આશાવાદી સમય	12	12	18	6	24	18	27
નિરશશાવાદી સમય	18	12	24	6	36	36	45
સૌથી વધુ સંભવિત સમય	6	12	12	6	30	30	30

(C) નીચેના પ્ર尺્નોના જવાબ આપો : (ગમે તે ત્રણા)
(1) કટોકટીપૂર્ણ માર્ગ પ૨ આવતી પ્રવૃત્તિઓનો ફાજલ સમય \qquad હોય છે.
(2) પર્ટના સંદર્ભમાં કાલ્પનિક પ્રવૃત્તિ સમજાવો.
(3) કટોકટીનો માર્ગ એટલે શું ?
(4) કોઈ એક પ્રવૃત્તિ માટે EST $=20$, કોઈ પ્રવૃત્તિનો સમય $=5$, ફાજલ સમય $=5$ હોય તો LFT शोधો.
\qquad

AD-106

April-2019
B.Com., Sem.-II

CE-102 : Advance Statistics
(Operation Research)
(New Course)

Time : 2:30 Hours]
[Max. Marks : 70
Instructions : (1) Figures to the right indicate marks.
(2) Simple calculator is allowed.
(3) Graph paper will be given on request.

1. (A) What is Linear Programming and write the Mathematical form of a Linear Programming problem.

OR

Write the uses of Linear Programming.
(B) Maximize $\mathrm{Z}=2 x+y$ under the following constraints.
$x \geq 0, \mathrm{y} \geq 0$
$x+2 \mathrm{y} \leq 10$
$x+y \leq 6$
$x-y \leq 2$
$x-2 y \leq 1$

OR

The question paper of statistics is divided in two sections A and B. Each question of section A carries 5 marks and 4 minutes are required to solve it. Each question of section B carries 6 marks and 6 minutes are required to solve it. The time limit given for the examination is of 1 hour and in all answers of maximum 12 questions are to be given. How many questions are to be attempted from each section to get maximum marks by using graphical method ?
(C) Fill in the blanks by selecting correct option from the given options :
(1) In linear programming $x \geq 0$ and $y \geq 0$ are called \qquad .
(a) Non-negativity constraints
(b) Zero condition
(c) Objective function
(d) None of these
(2) Linear Programming was first introduced by \qquad .
(a) Karl Pearson
(b) George B. Dantzing
(c) Newton
(d) None of these
(3) The inequalities for decision variables in a linear programming problem are called \qquad
(a) objective function
(b) basic solution
(c) optimum solution
(d) constraints
(4) The graph of $x \geq 3$ is a \qquad line and \qquad side of $i t$.
(a) horizontal, right
(b) vertical, right
(c) horizontal, left
(d) vertical, left
2. (A) Explain matrix minimum method for solving transportation problem.

OR

What is transportation problem? Explain its mathematical form.
(B) Find initial basic feasible solutions of the following transportation problem by using any two methods.

Destinations

Origins	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	Supply
\mathbf{P}	5	7	6	8	9	20
\mathbf{Q}	9	8	10	4	11	35
\mathbf{R}	10	12	9	7	8	40
\mathbf{S}	6	6	7	8	8	15
Demand	$\mathbf{1 5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{1 1 0}$
	OR					

Solve the following transportation problem by using Vogel's method.

	P	Q	R	S	Supply
A	15	13	10	9	15
B	6	7	12	5	16
C	7	10	11	14	10
D	18	16	12	15	9
Demand	7	8	15	20	50

(C) Answer the following questions: (any two)
(1) What do you mean by balanced transportation problem?
(2) Which are the methods for obtaining initial solution to given transportation problem?
(3) Write main goal of transportation problem.
(4) For a transportation matrix of order 4×3, how many number of independent solution will be there ?
3. (A) Explain Hungarian method for solving assignment problem.

OR

Write short note for Replacement Theory.
(B) Solve the following assignment problem to maximize profit :

Machine

Person	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}
I	32	38	40	28	40
II	40	24	28	21	36
III	41	27	33	30	37
IV	22	38	41	36	36
V	29	33	40	35	39
	OR				

(i) Solve the following Assignment problem so as to minimize the cost :

Machine

Job	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
	$\mathbf{A}_{\mathbf{1}}$	8	5
13			
$\mathbf{A}_{\mathbf{2}}$	5	6	11
$\mathbf{A}_{\mathbf{3}}$	7	11	9

(ii) The price of a machine is ₹ 10,000 . Its maintenance expense is ₹ 300 for the first year and then it increase by ₹ 1,000 per year. At what time it is possible to replace the machine ?
(C) Answer the following questions: (any three)
(1) Write main objective of assignment problem.
(2) What is main difference between transportation problem and assignment problem?
(3) Under which assumptions we discuss replacement problem?
(4) In assignment problem no. of rows and column must be \qquad .
(5) In assignment problem the value of allocated units $X_{i j}$ is \qquad .
4. (A) Give the advantages and limitations of PERT.

OR

Explain the difference between PERT and CPM.
(B) Determine float time for each of the following activities :

Activity	$1-2$	$2-3$	$3-4$	$3-5$	$4-6$	$5-6$	$6-7$
Time	2	4	3	2	4	3	8
OR							

Prepare PERT chart and find critical path for the project :

Activity	$1-2$	$1-3$	$1-4$	$2-5$	$3-5$	$4-6$	$5-6$
Optimistic time	12	12	18	6	24	18	27
Pessimistic time	18	12	24	6	36	36	45
Most likely time	6	12	12	6	30	30	30

(C) Answer the following : (any three)
(1) Float time for any activity on critical path is \qquad .
(2) Explain the dummy activity with reference to PERT.
(3) What do you mean by critical path?
(4) For an activity $\mathrm{EST}=20$, time for an activity $=5$, Float time is 5 , then find LFT.

