Seat No. : _____

SL-105

September-2020

B.Sc., Sem.-VI

CC-310 : Statistics

(Operations Research) (New)

Time : 2 Hours]

[Max. Marks : 50

- All Questions in Section-I carry equal marks. **Instructions :** (1)
 - (2) Attempt any three questions in Section-I.
 - Question 9 in Section-II is compulsory. (3)

SECTION – I

SL-1	05	1	P.T.	0.
	(B)	Explain Vogel's Approximation Method of solving a transportation problem.		7
4.	(A)	Explain Hungarian method for solving assignment problem.		7
	(B)	Explain the various steps of U-V method of solving a transportation problem.		7
3.	(A)	Explain North West Corner Method of solving a transportation problem.		7
	(B)	Describe simplex method of solving linear programming problems.		7
۷.	(A)	Explain the graphical method of solving linear programming problems.		1
2.	(A)	Explain the graphical method of solving linear programming problems.		7
	(B)	Discuss scope of operations research.		7
		operations research.		7
1.	(A)	Define operations research and discuss different types of models used	d in	

5.	(A)	Compare and contrast CPM and PERT. Under what conditions would you	
		recommend the scheduling by PERT ?	7
	(B)	Explain the following terms in PERT :	7
		(i) Optimistic time	
		(ii) Most likely time	
		(iii) Pessimistic time	
		(iv) Expected time	
6.	(A)	Explain different types of floats used in Network Analysis.	7
	(B)	State the circumstances where CPM is a better technique of project management	
		than PERT.	7
7.	(A)	Explain Maxi-Min and Mini-Max principle used in Game Theory.	7
	(B)	Define : (i) Payoff matrix (ii) Pure and mixed strategies.	7
8.	(A)	Explain the general rules for dominance.	7
	(B)	Explain the two-person zero-sum game, giving a suitable example.	7
		SECTION – II	
9.	Ansv	wer any four :	8
	(A)	What is linear programming ?	
	(B)	Define feasible solution and basic feasible solution.	
	(C)	What is degeneracy in transportation problems ?	
	(D)	What is an assignment problem ?	
	(E)	Define dummy activity and critical activity.	
	(F)	What is looping in network diagram ?	
	(G)	Define saddle point and give one limitation of game theory.	
	(H)	Define fair game and strictly determinable game.	

SL-105

Seat No. : _____

[Max. Marks : 50

SL-105

September-2020

B.Sc., Sem.-VI

CC-310 : Statistics

(Operations Research) (Old)

Instructions :(1)All Questions in Section-I carry equal marks.(2)Attempt any three questions in Section-I.

Time : 2 Hours]

(3) Question 9 in Section-II is compulsory.

SECTION – I

1.	(A)	Define operations research and discuss different types of models used in operations research.	7
	(B)	Discuss scope of operations research.	, 7
2.	(A) (B)	Explain the graphical method of solving linear programming problems. What is the principle of duality in linear programming ? Explain its advantages.	7 7
3.	(A) (B)	Explain North West Corner Method of solving a transportation problem. Explain the various steps of U-V method of solving a transportation problem.	7 7
4.	(A) (B)	Explain Hungarian method for solving assignment problem. Explain table minimum method of solving a transportation problem.	7 7
5.	(D) (A)	Give Johnson's method for determining the optimal sequence for processing n	_
	(B)	jobs on two machines. Explain gradual failure and sudden failure.	7 7
6.	(A)	What is no passing rule in a sequencing algorithm ? Explain the principal assumptions made while dealing with sequencing problems.	7
	(B)	Describe some important replacement situations.	7
SL-1	05	3 P.T.C	Э.

7.	(A)	Compare and contrast CPM and PERT. Under what conditions would you recommend the scheduling by PERT ?	7
	(B)	Explain the following terms in PERT :	7
		(a) Optimistic time	
		(b) Most likely time	
		(c) Pessimistic time	
		(d) Expected time	
8.	(A)	Explain different types of floats used in Network Analysis.	7
	(B)	Give application areas of PERT/CPM techniques.	7

SECTION – II

8

9. Answer any **four** :

- (A) What is linear programming ?
- (B) Define slack and surplus variables in a linear programming problem.
- (C) What is degeneracy in transportation problems ?
- (D) What is an assignment problem ?
- (E) What do you understand by total elapsed time ?
- (F) Define sequencing problem.
- (G) Define dummy activity and critical activity.
- (H) What is looping in network diagram ?