Seat No. : \qquad

SL-116

September-2020
B.Sc., Sem.-VI

CC-310 : MATHEMATICS
(Graph Theory)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (i) Attempt any THREE questions in. Section-I.
(ii) Section-II is a compulsory section of short questions.
(iii) Notations are usual everywhere.
(iv) The right hand side figures indicate marks of the sub question.

SECTION - I

Attempt any THREE of the following questions:

1. (a) Define (1) vertex deleted subgraph (2) induced subgraph induced by vertex set and find the graphs (i) $G-\{D, H, K\}$ (ii) $G-\{c, g, j\}$ (iii) subgraph induced by $\{\mathrm{c}, \mathrm{g}, \mathrm{j}\}$ for the following graph (Fig-1).

Fig. 1
(b) Define the k-cube Q_{k} for integer $k \geq 1$ and show that it has $2 k$ vertices, $k 2^{k-1}$ edges.
2. (a) Define isomorphism of graphs. Show that the following graphs (Fig-2) are isomorphic.

Fig. 2
(b) Prove that the complete graph K_{n} has $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$ edges.
3. (a) If u and v are distinct vertices of a tree T, then prove that there is precisely one path from u to v.
(b) Let G be a graph with n vertices. If G is a cyclic graph with $\mathrm{n}-1$ edges, then prove that G is a tree.
4. (a) Prove that an edge e of a graph G is a bridge if and only if e is not part of any cycle in graph G.
(b) Let e be an edge of the graph G and, as usual, let $\mathrm{G}-\mathrm{e}$ be the subgraph obtained by deleting e. Then prove that $\omega(\mathrm{G}) \leq \omega(\mathrm{G}-\mathrm{e}) \leq \omega(\mathrm{G})+1$.
5. (a) Prove that a graph G is connected if and only if it has a spanning tree.
(b) Find Connectivity $\mathrm{k}(\mathrm{G})$ for the following graphs (Fig-3). If $\mathrm{k}(\mathrm{G})=\mathrm{I}$, identify the cut vertices.

(a)

(b)

(c)

Fig. 3
6. (a) Prove that if a vertex v of a connected graph G is a cut vertex of G then, there are two vertices u and w of G different from v such that v is on every $u-w$ path in G. 7
(b) Let G be a graph with n vertices, where $\mathrm{n} \geq 2$. Then prove that G has at least two vertices which are not cut vertices.
7. (a) Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
(b) Find closure of the graph (Fig-4):

Fig. 4
8. (a) Write a short note on Königsberg seven bridges problem.
(b) Use the Fleury's algorithm to produce an Euler tour for the following graph (Fig-5)

Fig. 5

SECTION - II

9. Attempt any FOUR of the followings in short :
(i) Define the distance between two vertices in a connected graph and find distance between A and M in (Fig-1).
(ii) Define self-isomorphic graph and give an example.
(iii) Draw fusion graph from the graph in (Fig-1) by fusing vertices A and F.
(iv) Define (i) Tree and (ii) Bridge.
(v) A graph is disconnected. What is its connectivity? Define spanning tree.
(vi) Define Hamiltonian Cycle. Is the graph in (Fig-5) Hamiltonian?
