Seat No.:	

7

7

7

SM-107

September-2020

B.Sc., Sem.-VI

311 : Mathematics (Convex Analysis and Probability Theory)

Time: 2 Hours] [Max. Marks: 50

Instructions: (1) Attempt any **THREE** questions in **Section** – **I**.

- (2) **Section-II** is a **compulsory** section of short questions.
- (3) Notations are usual everywhere.
- (4) The right hand side figures indicate marks of the sub question.

Section - I

Attempt any three of the following questions:

- 1. (A) Define convex set and affine set. Also explain each of them by an example.
 - (B) Show that the function $f: R \to R$ defined as $f(x) = x^2$ is monotonically increasing on $[0, \infty)$ and decreasing on $[-\infty, 0]$.
- 2. (A) If the polynomial function $f: R \to R$ is defined as

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 7$$

then check the differentiability and monotonicity of f.

(B) Define convex and concave functions on an interval I. Also show that the function $f: R \to R$ defined as $f(x) = x^3$ is a convex function on $[0, \infty)$ whereas concave on $(-\infty, 0]$.

3. (A) Define terms: Sample space, Impossible and Certain Events, Mutually exclusive and Exhaustive events, Difference events. Also, state the probability of certain 7 events and complementary events. A balanced dice is tossed twice. Write the elements of the following: (1)Sample space. (2) A = Event that sum of the integers on two dice is 7 or 10.(3) B = Event that integers on dice are odd.**(4)** C = Event that sum of integers on two dice is divisible by 3.(5) D = Event that sum of integers on two dice is greater than 6.Check whether events A and D are mutually exclusive or not. Also, find probabilities of events A, B, C and D. 7 4. (A) Define Classical definition of probability. State additive rule of probability for two and three events. If two events A, B and C are mutually exclusive events, then state the values of $P[A \cup B]$ and $P[A \cup B \cup C]$. Given two events A and B such that P[A] = 0.32, P[B] = 0.50 and $P[A \cup B] = 0.75$, then find $P[A \cap B]$. 7 What do you understand by an objective and subjective probability? Give one (B) example of each. Which kind of the probability can be explained mathematically? Why? 7 5. (A) State the probability function of Binomial distribution. State applications of binomial distribution and write its mean and variance. If a

State applications of binomial distribution and write its mean and variance. If a random variable X follows a binomial distribution with parameters n = 6, p = 40, then find mean, variance and moment generating function of X. Is mean larger than variance?

7

7

(B) If a random variable X follows poisson distribution with parameter m = 2, state values of mean (E(X)), variance (V(X)), E(X + 4), E(2X - 3), V(4X). Also, find P(X = 1), P(X < 2).

6. (A) If a random variable X follows binomial distribution with parameters (n, p) then, state the conditions to get poisson distribution from binomial distribution. State the mean and variance of Poisson distribution.

7

If, a random variable X follows Poisson distribution with parameter θ , then, find θ such that P[X=2] = P[X=3]. Also, if $\theta=2$, find P[X=0], P[X=1]

$$\{e^{-1} = 0.368, e^{-2} = 0.135, e^{-3} = 0.050\}$$

(B) State the probability function of a normal distribution. Also, state the relationship between mean, median and mode of a normal distribution. Do you agree that the normal distribution is symmetric one?

Section - II

7. Answer any **Four** of the followings in Short :

8

7

- (1) Give examples each one of convex and non-convex sets of \mathbb{R}^2 .
- (2) If $A = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 5\}$, then find the convex hull of A.
- (3) Using the addition rule of probability for two events A and B defined on a finite sample space such that P[A] = 0.35, P[B] = 0.45 and $P[A \cap B] = 0.65$, then find the probability of events $P(A \cup B)$ and $P(\overline{A} \cap \overline{B})$.
- (4) State Bayes' theorem on probability. Also, state its uses.
- (5) Give one application, each of binomial and poisson distributions.
- (6) State moment generating function of binomial distribution.

Seat No.	:	
----------	---	--

7

7

7

7

7

SM-107

September-2020

B.Sc., Sem.-VI

311 : Mathematics (Cryptography)

Time: 2 Hours] [Max. Marks: 50

- **Instructions:** (1) Attempt any **THREE** questions in **Section I**.
 - (2) **Section-II** is a **compulsory** section of short questions.
 - (3) Notations are usual everywhere.
 - (4) The right hand side figures indicate marks of the sub question.

Section - I

Attempt any three of the following questions:

- 1. (A) Define Ring. Explain Euclidean algorithm.
 - (B) Obtain the value of x that satisfies the following four congruence $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{7}$.
- 2. (A) If n is a fixed positive integer and a, b, c, d are integer, then prove that the following:
 - (1) $a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n} \Leftrightarrow a b \equiv 0 \pmod{n}$.
 - (2) $a \equiv a \pmod{n}$.
 - (3) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n} \Leftrightarrow a \equiv c \pmod{n}$.
 - (B) Obtain all the primite element of \mathbb{Z}_{37} .
- (A) Define Cryptosystem. Encrypt the following message using a shift cipher with a shift of + 20. "Comfort is the enemy of achievement."
 Encrypt the following message using a shift cipher with a shift of 20. "The person that you will spend the most time with in your life is yourself, so you better try to make yourself as interesting as possible."
 - (B) Using Affine cipher encrypt "People are not against you; they are for themselves." with (4x + 5) (mod26).

4.	(A)	A ciphertext obtained using the shift cipher is given below. Do the cryptanalysis and obtain the plaintext.: HAAHJRHAKHDU.	7
	(B)	Suppose that affine cipher $E(x) = (ax + b) \pmod{26}$ enciphers s as U and o as A. Find a and b.	7
5.	(A)	Define Trapdoor function. Discuss Birthday Paradox.	7
	(B)	Alice and Bob select the prime number $p=17$ with $g=6$ as a primitive elements. Alice select a random number $a=5$ as private key, computes her public key and sends it to Bob; Bob uses $b=9$ as the ephemeral key to mail a message $m=13$ to Alice. Show the full transaction including the recovery of massage key using ElGamal Public-Key cryptosystem.	7
6.	(A)	Alice selects $p = 23$ and $c = 5$ and convey the same to Bob Alice selects $a = 6$ and Bob selects $b = 15$. What is private key exchange between them using the DH algorithm? Show how Eve mounts an attack using Shank's algorithm and wrenches the private key shared between Alice and Bob.	7
	(B)	With $p=17$, $q=19$, $e=29$ and $m=25$. Show that the complete transaction conforming to the RSA cryptosystem.	7
		Section – II	
7.	Atte	mpt any Four . Do as directed:	8
	(1)	a is not primitive element of \mathbb{Z}_p if	
	(2)	$\phi(n_1, n_2) = \phi(n_1) \phi(n_2) \text{ if }$	
	(3)	Explain the terms in the context of cryptography: Encryption, Diagram, Trigram.	
	(4)	and are specific case of Polycryptosystem.	
	(5)	A combination of an encryption algorithm and a decryption algorithm is called a	
	(6)	Full form of RSA.	

Seat No.	:	
----------	---	--

7

7

7

7

SM-107

September-2020

B.Sc., Sem.-VI

311 : Mathematics (Operations Research)

Time: 2 Hours [Max. Marks: 50

Instructions:

- (1) Attempt any **THREE** questions in **Section I**.
- (2) **Section-II** is a **compulsory** section of short questions.
- (3) Notations are usual everywhere.
- (4) The right hand side figures indicate marks of the sub question.

Section - I

- 1. (A) Discuss Economic Order Quantity (EOQ) Model with finite replenishment rate.
 - (B) Using the EOQ model with constant rate of demand, obtain EOQ and the total variable cost associated with policy of ordering quantities of that size. Annual demand = 10,000 units, ordering cost = ₹ 40 per order and inventory carrying cost is 20% of average inventory value.
- 2. (A) Discuss Economic Order Quantity (EOQ) model with constant rate of demand.
 - (B) A company plans to consume 760 pieces of a particular component. Pat records indicates that the purchasing department spent ₹ 12,555 for placing 15,500 Purchase orders. The average inventory was valued at ₹ 45,000 and the total Storage cost was ₹ 7650 which included wages, taxes, rent, insurance etc. related to the store department. The company borrows capital at the rate of 10% per year. If the price of component is ₹ 12 and the lot-size is 10, find the following:
 - (1) Purchase price per year (2) Purchase expenses per year (3) Storage expenses per year (4) Capital cost per year (5) Total cost per year.

- 3. (A) Compare and contrast CPM and PERT. Under what conditions would you recommend scheduling by PERT? Justify your answer with reasons.
 - (B) Draw an arrow diagram showing the following relationships.

Activity	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
Immediate Predecessor	_	_	_	A, B	В, С	A, B	С	D, E, F	D	G	G	Н, Ј	K	I, L

- 4. (A) Discuss various steps involved in the applications of PERT and CPM.
 - (B) An established company has decided to add a new product to its line. It will buy the product from a manufacturing concern, package it, and sell it to a number of distributors selected on a geographical basis. Market research has indicated the volume expected and the size of sales force required. The steps shown in the following table are to be planned:

Activity	Description	Time (Weeks)				
A	Organize sales office	6				
В	Hire salesmen	4				
С	Train salesmen	7				
D	Select advertising agency	2				
Е	Plan advertising campaign	4				
F	Conduct advertising campaign	10				
G	Design package	2				
Н	Setup packaging facilities	10				
I	Package initial stocks	6				
J	Order stock from manufacturer	13				
K	Select distributors	9				
L	Sell to distributors	3				
M	Ship stocks	5				

SM-107 7 P.T.O.

7

7

7

7

- 5. (A) Explain the two person zero sum game giving a suitable example.
 - (B) Let the payoff matrix is as follow: $\begin{bmatrix} 40 & -80 \\ 15 & -20 \\ 20 & 50 \end{bmatrix}$. Determine optimal strategies and value of the game.
- 6. (A) Explain Dominance Principle in Game theory.
 - (B) Solve the following game whose payoff matrix is given by:

$$\begin{bmatrix} 3 & -1 & 4 & 6 & 7 \\ -1 & 8 & 2 & 4 & 12 \\ 16 & 8 & 6 & 14 & 12 \\ 1 & 11 & -4 & 2 & 1 \end{bmatrix}$$

Section - II

7. Attempt any **Four** short questions :

8

7

7

- (1) Give types of Direct inventory.
- (2) Explain any two cost involved in Inventory problem.
- (3) Explain Looping and Dangling.
- (4) Explain Dummy activity.
- (5) Give list of applications of PERT and CPM techniques in Project management.
- (6) Explain Maximin and Minimax Principle in short.
