GUJARAT UNIVERSITY

B.ED. Examination - SEMESTER - III

December-January - 2020-21

B-106 Pedagogy of School Subject - MATHEMATICS

Time : 2 Hour

Total Marks : 50

1. The difference between two whole numbers is 66 . The ratio of the two numbers is 2: 5. The two numbers are:
(A) 60 and 6
(B) 100 and 33
(C) 110 and 44
(D) 99 and 33
2. If area of square $625.25 \mathrm{~m}^{2}$ then measure of side is \qquad
(A) 25.500 m
(B) 25.005 m
(C) 25.05 m
(D) 25.050 m
3. If parameter of rectangle is 13 cm and breadth is $\frac{23}{4} \mathrm{~cm}$ then length is \qquad
(A) $3 \frac{3}{4}$
(B) $4 \frac{4}{3}$
(C) $4 \frac{3}{2}$
(D) $3 \frac{4}{3}$
4. If $0.25(4 f-3)=0.05(10 f-9)$ then $f=$ \qquad
(A) 6
(B) 0.06
(C) -6
(D) 0.6
5. If price of pair of shoes was 450 Rs. in one shop and 5\% GST had clamed on it then amount of the bill was \qquad Rs.
(A) 472.70
(B) 427.60
(C) 472.50
(D) 477.20
6. If a radius of on cylinder is 7 cm and total surface are $968 \mathrm{~cm}^{2}$ then height of cylinder will be \qquad
(A) 16 cm
(B) 14 cm
(C) 15 cm
(D) 21 cm
7. $\left(\frac{5}{8}\right)^{-7} \mathrm{X}\left(\frac{8}{5}\right)^{-5}=$ \qquad
(A) $\left(\frac{25}{64}\right)$
(B) $\left(\frac{36}{28}\right)$
(C) $\left(\frac{12}{13}\right)$
(D) $\left(\frac{64}{25}\right)$
8. If $\left(\frac{2 x}{3}\right)+1=\left(\frac{7 x}{15}\right)+3$ then $x=$ \qquad
(A) 90
(B) 10
(C) -10
(D) -90
9. Surface area of cube = \qquad
(A) 31^{3}
(B) $3 \imath^{2}$
(C) 61^{3}
(D) $6 \mathrm{l}^{2}$
10. $1 \mathrm{~m}^{3}=$ \qquad cm^{3}
(A) 1000000
(B) 10000000
(C) 10000
(D) 100000000
11. $\frac{1-\cos A}{\sin A}=$ \qquad
(A) $\frac{\sin A}{1-\cos A}$
(B) $\frac{\sin A}{1+\cos A}$
(C) $\frac{\cos A}{1-\cos A}$
(D) $\frac{\cos A}{1+\cos A}$
12. If $x-1$ is one of the factor of $\mathrm{p}(x)=2 x+k x+\sqrt{2}$ then $\mathrm{k}=$ \qquad
(A) $\sqrt{2}+2$
(B) $-2+\sqrt{2}$
(C) $-(2+\sqrt{2})$
(D) $2-\sqrt{2}$
13. $(-12)^{3}+(7)^{3}+(5)^{3}=$ \qquad
(A) 1620
(B) -1620
(C) 1260
(D) - 1260
14. \qquad is one of the zeros of the polynomial $x^{3}-6 x^{2}+2 x-12$
(A) -6
(B) 6
(C) 3
(D) 12
15. The line joining $P(-2,3)$ and $Q(4,3)=$ \qquad
(A) is parallel to the X axis
(B) is parallel to the Y axis
(C) is perpendicular to the Y axis
(D) intersects both the axes
16. $\angle \mathrm{ACD}$ is an exterior angle of $\triangle \mathrm{ABC}$ if $\angle \mathrm{ACD}=110^{\circ}$ and $\angle \mathrm{A}=60^{\circ}$ then $\angle B=$ \qquad
(A) 50°
(B) 60°
(C) 120°
(D) 30°
17. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AC}=5$ and $\mathrm{BC}=4$, then the perimeter of $\triangle \mathrm{ABC}$ is \qquad
(A) 9
(B) 11
(C) 13
(D) 17
18. In $\triangle \mathrm{ABC}, \mathrm{P}$ is the midpoint of AB and Q is the midpoint of AC , then PQCB is a \qquad
(A) Parallelogram
(B) Rectangle
(C) Trapezium
(D) Rhombus
19. $\Delta \mathrm{PQR} \angle \mathrm{Q}=90^{\circ}, \mathrm{PQ}=5 \mathrm{~cm}$ and $\mathrm{PR}=13 \mathrm{~cm}$, Then $\operatorname{ar}(\mathrm{PQR})=$ \qquad cm^{2}
(A) 30
(B) 15
(C) 45
(D) 60
20. In a circle with centre P, AB and CD are congruent Chords. If $\angle \mathrm{PAB}=40^{\circ}$, then $\angle \mathrm{CPD}=$ \qquad
(A) 90°
(B) 110°
(C) 100°
(D) 105°
21. In cyclic quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=70^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{C}=160^{\circ}$ Then $\angle \mathrm{B}=$ \qquad
(A) 130°
(B) 25°
(C) 35°
(D) 50°
22. The perimeter of rhombus ABCD is 40 cm and $\mathrm{BD}=16 \mathrm{~cm}$. Then $\operatorname{ar}(\mathrm{ABCD})=$ \qquad cm^{2}
(A) 48
(B) 96
(C) 24
(D) 72
23. The height of a cone is 24 cm and its slant height is 25 cm . Then its diameter is \qquad cm.
(A) 14
(B) 12
(C) 7
(D) 49
24. The total surface area of a closed cylinder with radius 3.5 cm and height 6.5 cm is \qquad cm^{2}
(A) 110
(B) 330
(C) 220
(D) 440
25. The surface area of a sphere is $616 \mathrm{~cm}^{2}$. Then its radius is \qquad cm
(A) 6
(B) 14
(C) 8
(D) 7
26. The mean of first five prime number is \qquad
(A) 28
(B) 2.8
(C) 5.6
(D) 1.4
27. When a balanced die is thrown the probability of getting 3 is \qquad
(A) $\frac{1}{6}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{1}{3}$
28. $(\sqrt{3}-\sqrt{2})^{2}$ is a/an \qquad number.
(A) natural
(B) irrational
(C) rational
(D)whole
29. In cyclic quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}-\angle \mathrm{C}=20^{\circ}$. Then $\angle \mathrm{A}=$ \qquad
(A) 80°
(B) 50°
(C) 20°
(D) 100°
30. PQRS is square if $\mathrm{PQ}=10 \mathrm{~cm}$. Then $\mathrm{PR}=$ \qquad cm.
(A) $10 \sqrt{2}$
(B) $2 \sqrt{10}$
(C) 10
(D) 20
31. \qquad is the smallest number which when divided by 20, 30 and 40 leaves a remainder 5 ?
(A) 115
(B) 120
(C) 125
(D) 130
32. Product of three consecutive integers is divisible by \qquad
(A) 24
(B) 6
(C) 20
(D) 8 but not by 24
33. The cubic polynomial $\mathrm{p}(x)=x^{3}-x$ has \qquad zero.
(A) 0
(B) 1
(C) 2
(D) 3
34. In a two digit number, the digit at tens place is 7 and the sum of the digits is 8 times the digit at unit place. Then the number is \qquad
(A) 70
(B) 71
(C) 17
(D) 78
35. The quadratic equation \qquad has 3 as one of its roots.
(A) $x^{2}-x-6=0$
(B) $x^{2}+x-6=0$
(C) $x^{2}-x+6=0$
(D) $x^{2}+x+6=0$
36.If the sum of the three consecutive terms of A.P. is 48 and the product of the first and the last is 252 , then $\mathrm{d}=$ \qquad
(A) 2
(B) 3
(C) 4
(D) 16
36. If $2 k+1,13,5 k-3$ are three consecutive terms of A.P. then $k=$ \qquad
(A) 17
(B) 13
(C) 4
(D) 9
37. Correspondence $\mathrm{ABC} \leftrightarrow \mathrm{DEF}$ of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ is similarity if $\mathrm{AB}+\mathrm{BC}$ $=10$ and $\mathrm{DE}+\mathrm{EF}=12$ and $\mathrm{AC}=6$, then $\mathrm{DF}=$ \qquad
(A) 6
(B) 5
(C) 7.2
(D) 16
38. The lengths of the sides of $\Delta \mathrm{DEF}$ are $4,6,8 \Delta \mathrm{DEF} \sim \Delta \mathrm{PQR}$ for correspondence $\mathrm{DEF} \leftrightarrow \mathrm{QPR}$. If the perimeter of $\Delta \mathrm{PQR}=36$, then the length of the smallest side of $\Delta \mathrm{PQR}$ is $=$ \qquad
(A) 6
(B) 2
(C) 4
(D) 8
39. In $\Delta \mathrm{XYZ}, \mathrm{m} \angle x: \mathrm{m} \angle y: \mathrm{m} \angle z=1: 2: 3$. If $\mathrm{XY}=15 \mathrm{YZ}=$ \qquad
(A) 5.7
(B) 17
(C) 8
(D) 7.5
40. If $\Delta \mathrm{ABC}, \mathrm{m} \angle \mathrm{A}=90, \overline{A D}$ is a median. If $\mathrm{AD}=6, \mathrm{AB}=10$, then $\mathrm{AC}=$ \qquad
(A) $2 \sqrt{11}$
(B) 8
(C) 7.5
(D) 16
41. $\mathrm{A}(0,0) \mathrm{B}(3,0), \mathrm{C}(3,4)$ are the vertices of a \qquad triangle.
(A) equilateral
(B) right angled
(C) isosceles
(D) acute angled
43.The value $\tan 20^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 70^{\circ}$ is \qquad
(A) -1
(B) 1
(C) 0
(D) $\sqrt{3}$
42. The tops of two poles of height 18 m and 12 m are connected by a wire if the wire makes an angle of measure 30° with horizontal then the length of the wire is \qquad
(A) 12 m
(B) 10 m
(C) 8 m
(D) 4 m
43. A chord of $\odot(0,5)$ touches $\odot(0,3)$. Therefore the length of the chord $=$ \qquad
(A) 10
(B) 7
(C) 8
(D) 6
44. The area of the largest triangle inscribed in a semi circle of radius 8 is \qquad
(A) 8
(B) 16
(C) 256
(D) 64
45. The radii of a frustum of a cone are 5 cm and 9 cm and height is 6 cm , then the volume is \qquad cm^{3}
(A) 320π
(B) 302π
(C) 151π
(D) 98π
46. If $\bar{x}-2=3$ and $\bar{x}+2=45$ then $\mathrm{M}=$ \qquad
(A) 24
(B) 22
(C) 26
(D) 23
47. The sum of the probability of all the elementary events of an experiment is \qquad
(A) 0
(B) 0.2
(C) 1
(D) 0.8
48. The diameter and the height of the cylinder are 14 cm and 10 cm respectively then the total surface are is \qquad cm^{2}
(A) 44
(B) 308
(C) 1010
(D) 748
