Seat No. :

## XC-120

T.Y.B.Sc.

March-2013
Statistics Paper - IX
Time : 3 Hours]
[Max. Marks : 105

1. (a) If X and Y are two independent Chi-square variates with parameters m and n respectively, obtain the distribution of (i) $X+Y$ (ii) $X / Y$ and (iii) $\frac{X}{X+Y}$.

## OR

If $x_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{n})$ are independent normal variates with mean zero and variance $\sigma^{2}$, then derive the distribution of
(i) $\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}^{2}$
(ii) $\sqrt{\sum_{i=1}^{\mathrm{n}} x_{\mathrm{i}}^{2}}$ and
(iii) $\sum_{i=1}^{n} \frac{x_{i}^{2}}{n}$.
(b) Write in detail all applications of Chi-square distribution. Let $S^{2}$ be the variance of a random sample of size 6 from $\mathrm{N}(\mu, 12)$, then find $\mathrm{P}\left(2.3<\mathrm{S}^{2}<22.2\right)$.

OR
If $x \sim \chi_{n}^{2}$ then prove that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}[\sqrt{2 x}-\sqrt{2 \mathrm{n}-1} \leq \mathrm{z}]=\Phi(\mathrm{z})$, where $\Phi(\mathrm{z})$ is the cumulative distribution function of standard normal distribution.
(c) (i) Let $x_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 24)$ be a random sample from a normal distribution mean 2 and variance 4. Compute $\mathrm{E}(\mathrm{S})$, where $\mathrm{S}=\sum_{\mathrm{i}=1}^{24}\left(x_{\mathrm{i}}-\mu\right)^{2}$.
(ii) If $x_{i} \sim \chi_{n_{i}}^{2}(\mathrm{i}=1, \ldots, 4)$ then state the distribution of $\mathrm{v}=\frac{\sum_{\mathrm{i}=1}^{3} x_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{4} x_{\mathrm{i}}}$.
(iii) Let $x$ and $y$ be independent standard normal variates. What will be the distribution of $\mathrm{U}=\left(\frac{x+y}{x-y}\right)^{2}$ ?
2. (a) Define " t " statistics and derive its probability density function. Explain its applications.

## OR

Define Snedecor's F-statistic and obtain its p.d.f.
(b) Obtain the sampling distribution of the sample correlation coefficient ' $r$ ' when population correlation coefficient $\rho=0$. Further show that when $\rho=0, \frac{\mathrm{r}}{\sqrt{1-\mathrm{r}^{2}}}$ $\sqrt{n-2}$ is a $t$-variate with $(n-2)$ d.f.

## OR

Explain how the F-distribution is related with $\chi^{2}$-distribution and t-distribution.
(c) (i) Give one application of Fisher's Z transformation.
(ii) State one application of F-distribution.
(iii) The student's t-distribution with 1 degree of freedom reduces to which distribution?
3. (a) Define Riemann-Stieltze's integral. In usual notations prove that, $f \in R(\alpha)$ on $[a, b]$ if and only if for $\forall \varepsilon>0$, there exists a partition $P$ of interval [a, b] such that $\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha)<\varepsilon$.

## OR

State and prove the theorem of "Differentiation under integral sign". If $u^{3}+v^{3}=x+y$ and $u^{2}+v^{2}=x^{3}+y^{3}$, then show that $\frac{\partial(u, v)}{\partial(x, y)}=\frac{1}{2}\left(\frac{y^{2}-x^{2}}{u v(u-v)}\right)$.
(b) Evaluate : (i) $\int_{0}^{3} x^{3} \mathrm{~d} x^{2}$
(ii) $\int_{0}^{3} x \mathrm{~d}[x]$, where $[x]$ is the integral part of $x$.

## OR

Evaluate : (i) $\quad \int_{1}^{2}(\log x)^{2} d\left(\sin ^{-1} \log x\right)$
(ii) $\int_{0}^{1} x \mathrm{~d}\left(x^{2}+1\right)$
(c) (i) Define Unit-step function.
(ii) Define Polar transformation of Jacobian.
(iii) State chain rule for Jacobian.
4. (a) State and prove Dirichlet's theorem for n variables.

## OR

If for $\mathrm{h}>0, I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{h}\left(x^{2}+\mathrm{y}^{2}\right)} \mathrm{d} x \mathrm{dy}$, then find I and hence obtain $\int_{-\infty}^{\infty} \mathrm{e}^{-\left(a x^{2}+\mathrm{b} x+\mathrm{c}\right)} \mathrm{d} x$.
(b) Prove that : $\iint_{\mathrm{D}} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{dy}=\frac{\pi}{4}\left(1-\mathrm{e}^{-\mathrm{R}^{2}}\right)$ where D is the region defined by $x \geq 0$, $\mathrm{y} \geq 0, x^{2}+\mathrm{y}^{2} \leq \mathrm{R}^{2}$.

## OR

Prove that : $\mathrm{I}=\iiint \int \mathrm{d} x \mathrm{dy} \mathrm{dz} \mathrm{dw}$ for all values of the variables for which $x^{2}+y^{2}+z^{2}+w^{2}<b^{2}$ is $\frac{\pi^{2}}{32}\left(b^{4}-a^{4}\right)$.
(c) (i) Give area of circle of radius $r$ in $\mathrm{R}^{2}$ and volume of sphere in $\mathrm{R}^{3}$.
(ii) State the spherical polar co-ordinate transformations.
(iii) State Lioville extension of Dirichlet's Integration.
5. (a) Describe the assumptions and various steps for the construction of life table.

## OR

What is abridged life table ? Explain both types of abridgement in the life table.
(b) Complete the life table of the population of a certain type of insects where $x$ being the age in days and $l_{x}=1000$ for $x=0$.

| $\boldsymbol{x}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{q}_{\boldsymbol{x}}$ | 0.120 | 0.005 | 0.010 | 0.050 | 0.100 | 0.500 | 0.800 | 0.900 |

OR

Complete the following life table :

| Age | $\mathrm{L}_{x}$ | $\mathrm{~d}_{x}$ | $\mathrm{p}_{x}$ | $\mathrm{~L}_{x}$ | $\mathrm{~T}_{x}$ | $\mathrm{e}_{x}^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 90000 | 500 | $?$ | $?$ | 4850000 | $?$ |
| 8 | $?$ | 400 | $?$ | $?$ | $?$ | $?$ |

(c) (i) Write only two uses of life table.
(ii) Define cohart of the life table.
(iii) Define population projection.

