Seat No. : _____

XA-131

T.Y.B.Sc. March-2013

Statistics : Paper – VII

(Statistical Inference and Applied Statistics)

Time: 3 Hours]

[Max. Marks: 70

- **Instructions :** (1) Attempt **all** questions.
 - (2) **Each** question carries equal marks.
- 1. (a) Explain the property of unbiasedness and efficiency.

OR

Let t_n be a consistent estimator for all $\theta \in \Omega$. Let $E(t_n) = \theta_n$ and $V(t_n) \to 0$ as $n \to \infty$. Then t_n is a consistent estimator for θ .

(b) X is a uniform random variable with range $[0, \theta]$. $x_1, x_2 \dots x_n$ are independent observations on x.

Define :
$$\theta_1^{\wedge} = \frac{2}{n} (x_1 + x_2 + \dots + x_n)$$

 $\theta_2^{\wedge} = \left\{ \frac{(n+1)}{n} \right\} \max(x_1, x_2 \dots x_n)$

Show θ_1^{\wedge} and θ_2^{\wedge} are unbiased for θ . Evaluate their relative efficiency.

OR

- (b) Let $x_1, x_2 \dots x_n$ be a random sample from a distribution with p.d.f. $f(x, \theta) = e^{-(x \theta)}$, $\theta < x < \infty$. Obtain sufficient statistic for θ .
- (c) Answer the following objectives :
 - (i) Give example of a statistic t which is unbiased for a parameter θ but t² is not unbiased for θ^2 .
 - (ii) Define most efficient estimator.

XA-131

2. (a) State and prove Cramer-Rao inequality with regularity conditions to be stated clearly.

OR

Prove that, in general M.L.E. is consistent.

(b) Find the M.L.E. of the parameters α and λ of the distribution :

$$f(x; \alpha, \lambda) = \frac{1}{\left[\lambda\right]} \left(\frac{\lambda}{\alpha}\right)^{\lambda} e^{\frac{-\lambda x}{\alpha}}, \quad 0 < x < \infty.$$

OR

Show that for Cauchy's distribution with parameter θ , not sample mean but sample median is consistent estimator for θ .

- (c) Answer the following objectives :
 - (i) Give example of a MLE which is not unbiased.
 - (ii) State any two properties of likelihood function.
- 3. (a) State and prove Neymann-Pearson lemma.

OR

Describe likelihood ratio test in detail. State its properties.

(b) Obtain most powerful critical regions for testing H_0 : $\theta = \theta_0$ Vs. H_1 : $\theta = \theta_1 > \theta_0$ and $\theta = \theta_1 < \theta_0$ in case of a normal population N(θ , σ^2) where σ^2 is known. Hence, find the power of the test.

OR

Let x_1 and x_2 be N(μ_1 , σ^2) and N(μ_2 , σ^2) respectively where the means and variance are unspecified.

Develop LR test for testing $H_0: \mu_1 = \mu_2$ Vs. $H_1: \mu_1 \neq \mu_2$.

- (c) Answer the following objectives :
 - (i) Clear the difference between simple and composite hypothesis.
 - (ii) What is meant by most powerful test ?
- 4. (a) For a two-way classification state the following :
 - (i) Mathematical model
 - (ii) Null hypothesis
 - (iii) Assumptions
 - (iv) Estimation of parameters
 - (v) ANOVA table

OR

- (a) Define analysis of variance. Give complete statistical analysis of one-way classification.
- (b) Derive the formula for estimating missing observation for an $m \times m$ LSD. Give its statistical analysis.

OR

How would you derive efficiency of randomized block design over completely randomized design ?

- (c) Answer the following objectives :
 - (i) Define : Experimental unit and experimental error.
 - (ii) State any two applications of completely randomized design.
- 5. (a) Explain fully randomized block design. State its merits and demerits.

OR

What is factorial experiment ? Explain 2^3 factorial experiment in detail.

XA-131

(b) Define : Confounding. Discuss 2^3 partially confounded design.

OR

Explain fully Latin square design. State its merits and demerits.

- (c) Answer the following objectives :
 - (i) State any two advantages of factorial experiment.
 - (ii) What is the importance of confounding in factorial experiment ?