Seat No. : \qquad

JD-102
 January-2021
 B.Com., Sem.-V
 305 : Statistics - V

Time : 2 Hours]
[Max. Marks : 50
સૂચના : (1) સાદા કેલક્યુલેટરનો ઉપયોગ કરી શકાશે.
(2) આલેખપત્ર વિનંતીથી મળી શકશે.
(3) વિભાગ- \mathbf{A} માંથી ગમે તે બે પ્રશ્નોના જવાબ લખો. દરેક પ્રશ્નના ગુણ સ૨ખા છે.
(4) વિભાગ-B ફ૨જિયાત છે.
વિભાગ - A

1. (A) (i) નિયત સંકલનના કોઈીપણ પાંચ ગુણધર્મો લખો.
(ii) સંકલન મેળવો : $\int \frac{3^{x} \cdot \mathrm{e}^{2 x}+\mathrm{e}^{3 x}}{\mathrm{e}^{2 x}} \mathrm{~d} x$
(B) નીચેનામાંથી ગમે તે બે ગણો :
(i) $\int\left(\frac{x^{2}}{x+3}\right) \mathrm{d} x$
(ii) $\int\left(\sqrt[3]{x}-\frac{1}{2} x+\frac{5}{\sqrt[3]{x}}\right) \mathrm{d} x$
(iii) $\int_{5}^{10}(30-x)^{4} \mathrm{~d} x$
2. (A) (i) પૉયશન વિત૨ણની વ્યાખ્યા આપી તેના ગુણધર્મો જણાવો.
(ii) 52 પત્તાની જોડમાંથી યદચ્છ રીતે ત્રણ પત્તા લેવામાં આવે તો
(a) ત્રણેય પત્તા ૨ાણીના હોય
(b) ત્રણેય લાલ(hearts) ના હોય તેની સંભાવના શોધો.
(B) પૉયશન વિત૨ણનો મધ્યક $=3$ છે, તો $\mathrm{P}(x \geq 2)$ ની કિંમત મેળવો.

$$
\left(\mathrm{e}^{-3}=0.049\right)
$$

3. (A) ટૂંકનોંધ લખો : ઉત્પાદન પ્રક્રિયામાં ગુણવત્તામાં ચલન
(B) એક ઉત્પાદન પ્રક્રિયા દ૨મ્યાન દ૨ અડધા કલાકે 4 એકમોના એક એવા નિદર્શ લઈ તેમનું ગુણવત્તા લક્ષણ માપવામાં આવે છે. દિવસ દ૨મ્યાન મળેલ માહિતી નીચે મુજબ છે. તે પ૨થી \bar{x} અને R આલેખ દોરી પ્રક્રિયા નિયંત્રણા અંગે તમારુ મંતવ્ય જણાવો.

ભવિષ્યના ઉત્પાદન માટેની નિયંત્રણ સીમાઓ પણ મેળવો.

निદर्श नं.	1	2	3	4	5	6	7	8	9	10
$\Sigma \boldsymbol{x}$	1316	1272	1340	1348	1312	1280	1304	1364	1324	1420
\mathbf{R}	35	20	5	10	5	40	50	20	30	67

$\left(\mathrm{n}=4\right.$ भाटे $\mathrm{A}_{2}=0.73, \mathrm{D}_{3}=0, \mathrm{D}_{4}=2.28$)
4. (A) ક્રિયા લક્ષણ વક્રનો અર્થ સમજાવી તેના ગુણધર્મો જણાવો.
(B) એક નિદર્શન યોજના $(100,10,1)$ માટે $\mathrm{AQL}=0.02$ અને LTPD $=0.05$ હોય તો ઉત્પાદકનું જોખમ અને ગ્રાહકનું જોખમ શોધો.
વિભાગ - B

માંગ્યા મુજબ જવાબ આપો : (ગમે તે પાંચ)
10
(1) જો સીમાંત આમદાની = ₹ 13 હોય તો કુલ આમદાની \qquad થાય.
(a) $13 x$
(b) $13+\mathrm{C}$
(c) $13 x+\mathrm{C}$
(2) પૉયશન વિત૨ણ માટે મધ્યક 8 છે તો તેનું પ્રમાણિત વિચલન \qquad થાય.
(a) 8
(b) $\sqrt{8}$
(c) 8^{2}
(3) p-નકશામાં ખામી પ્રમાણનું વિત૨ણ \qquad હોય છે.
(a) પ્રામાણ્ય
(b) પૉયशન
(c) द्विपદी
(4) એક નિદર્શન યોજના $(2000,15,3)$ સમજાવો.
(5) $\int\left(\frac{1}{6-7 x}\right) \mathrm{d} x=$
(a) $\frac{1}{7} \log (6-7 x)+C$
(b) $\quad \log (6-7 x)+\mathrm{C}$
(c) $\frac{1}{-7} \log (6-7 x)+C$
(6) અતિ ગુણોત્ત૨ વિત૨ણના કોઈૅપણ બે ગુણધર્મો લખો.
(7) R નકશા માટે જો $\mathrm{CL}=21.47, \mathrm{D}_{3}=0, \mathrm{D}_{4}=2.28$ હોય તો $\mathrm{LCL}=$ \qquad .
(a) 0
(b) 48.9516
(c) 19.19
(8) એક નિદર્શન યોજના $(100,18,1)$ માટે ખામી પ્રમાણ $P^{1}=0.01$ અને સમૂહના સ્વીકારની સંભાવના P_{a} $=1$ હોય તો ATI ની કિંમત મેળવો.
(9) આંકડાશાસ્ત્રીય ગુણવત્તા નિયંત્રણમાં \qquad આલેખ (નકશા)માં પૉયશન વિત૨ણનો ઉપયોગ ક૨વામાં આવે છે.
(a) \bar{x}-આલેખ
(b) c-આલેખ
(c) d-આલેખ
(10) કાચની શીશી (બોટલ)માં ૨હી ગયેલા હવાના પ૨પોટાની સંખ્યા \qquad વિત૨ણનું ઉદાહરણ છે.
(a) પ્રામાણ્ય
(b) પૉયશન
(c) द्विपही

Seat No. : \qquad

JD-102
 January-2021
 B.Com., Sem.-V
 305 : Statistics - V

Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) Simple calculator can be used.
(2) Graph paper will be supplied on request.
(3) Attempt any two questions from Section - A. All questions carry equal marks.
(4) Section - B is compulsory.

Section-A

1. (A) (i) Write any five properties of Definite Integral.
(ii) Evaluate : $\int \frac{3^{x} \cdot \mathrm{e}^{2 x}+\mathrm{e}^{3 x}}{\mathrm{e}^{2 x}} \mathrm{~d} x$
(B) Solve any two from the following :
(i) $\int\left(\frac{x^{2}}{x+3}\right) \mathrm{d} x$
(ii) $\int\left(\sqrt[3]{x}-\frac{1}{2} x+\frac{5}{\sqrt[3]{x}}\right) \mathrm{d} x$
(iii) $\int_{5}^{10}(30-x)^{4} \mathrm{~d} x$
2. (A) (i) Give definition of Poisson distribution. Also state its properties.

10
(ii) Three cards are drawn at random from a pack of 52 cards. Find the probabilities that
(a) all the cards are of queens
(b) all are heart
(B) For a Poisson distribution, if mean $=3$, then find $\mathrm{P}(x \geq 2)$

$$
\left(\mathrm{e}^{-3}=0.049\right)
$$

3. (A) Write short note on Causes of variations in a production process.
(B) Sample of 4 units each is taken at every half an hour and quality characteristics are measured. The data obtained during a day are as under. Draw \bar{x} and R chart and state your conclusion.

Also, obtain control limit for future production.

Sample No.	1	2	3	4	5	6	7	8	9	10
$\Sigma \boldsymbol{x}$	1316	1272	1340	1348	1312	1280	1304	1364	1324	1420
\mathbf{R}	35	20	5	10	5	40	50	20	30	67

(For $\mathrm{n}=4, \mathrm{~A}_{2}=0.73, \mathrm{D}_{3}=0, \mathrm{D}_{4}=2.28$)
4. (A) Explain operating characteristic curve and write its characteristics.
(B) Find producer's risk and consumer's risk for a single sampling plan (100, 10, 1) when $\mathrm{AQL}=0.02$ and $\mathrm{LTPD}=0.05$.

Section - B

Do as directed : (any five)
(1) If marginal revenue $=₹ 13$, then total revenue $=$ \qquad .
(a) $13 x$
(b) $13+\mathrm{C}$
(c) $13 x+\mathrm{C}$
(2) Mean of a Poisson distribution is 8 , then its standard deviation $=$ \qquad .
(a) 8
(b) $\sqrt{8}$
(c) 8^{2}
(3) Distribution of fraction defective in p-chart is \qquad
(a) Normal
(b) Poisson
(c) Binomial
(4) Explain single sampling plan $(2000,15,3)$.
(5) $\int\left(\frac{1}{6-7 x}\right) \mathrm{d} x=$ \qquad
(a) $\frac{1}{7} \log (6-7 x)+\mathrm{C}$
(b) $\quad \log (6-7 x)+C$
(c) $\frac{1}{-7} \log (6-7 x)+C$
(6) State any two properties of hypergeometric distribution.
(7) For R-chart: $\mathrm{CL}=21.47, \mathrm{D}_{3}=0, \mathrm{D}_{4}=2.28$, then $\mathrm{LCL}=$ \qquad .
(a) 0
(b) 48.9516
(c) 19.19
(8) For a single sampling plan $(100,18,1)$ proportion of defective of the $\operatorname{lot} \mathrm{P}^{1}=0.01$ and probability of the acceptance of $\operatorname{lot} \mathrm{P}_{\mathrm{a}}=1$, find ATI.
(9) Poisson distribution is used in \qquad chart of statistical quality control.
(a) \bar{x}-chart
(b) c -chart
(c) d-chart
(10) Number of air bubbles in a glass bottle follows \qquad distribution.
(a) Normal
(b) Poisson
(c) Binomial

