Seat No.	:	
----------	---	--

JB-122

January-2021

B.Ed., Sem.-III

B-106: Mathematics (Pedagogy of School Subject)

Time: 2 Hours [Max. Marks: 50

1.	The difference between two whole numbers is 66. The ratio of the two numbers is 2:5.
	The two numbers are :

(a) 60 and 6

(b) 100 and 33

(c) 110 and 44

(d) 99 and 33

(a) 25.500 m

(b) 25.005 m

(c) 25.05 m

(d) 25.050 m

3. If parameter of rectangle is 13 cm and breadth is
$$\frac{23}{4}$$
 cm then length is _____.

(a) $3\frac{3}{4}$

(b) $4\frac{4}{3}$

(c) $4\frac{3}{2}$

(d) $3\frac{4}{3}$

4. If
$$0.25 (4f - 3) = 0.05 (10f - 9)$$
 then $f = ____.$

(a) 6

(b) 0.06

(c) -6

(d) 0.6

(a) 472.70

(b) 427.60

(c) 472.50

(d) 477.20

- 6. If a radius of one cylinder is 7 cm and total surface is 968 cm², then height of cylinder will be _____.
 - (a) 16 cm

(b) 14 cm

(c) 15 cm

(d) 21 cm

- 7. $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5} = \underline{\qquad}$
 - (a) $\left(\frac{25}{64}\right)$

(b) $\left(\frac{36}{28}\right)$

(c) $\left(\frac{12}{13}\right)$

- (d) $\left(\frac{64}{25}\right)$
- 8. If $\left(\frac{2x}{3}\right) + 1 = \left(\frac{7x}{15}\right) + 3$ then x =_____
 - (a) 90

(b) 10

(c) -10

- (d) -90
- 9. Surface area of cube = _____.
 - (a) $3l^3$

(b) $3l^2$

(c) $6l^3$

(d) $6l^2$

- 10. $1 \text{ m}^3 = \underline{\qquad} \text{ cm}^3.$
 - (a) 100 00 00

(b) 100 00 000

(c) 10000

(d) 100 00 00 00

- $11. \quad \frac{1-\cos A}{\sin A} = \underline{\hspace{1cm}}$
 - (a) $\frac{\sin A}{1-\cos A}$

(b) $\frac{\sin A}{1 + \cos A}$

(c) $\frac{\cos A}{1-\cos A}$

(d) $\frac{\cos A}{1 + \cos A}$

12.	If $x - 1$ is one of the factor of $p(x) = 2x + kx + \sqrt{2}$ then $k = \underline{\hspace{1cm}}$.			
	(a)	$\sqrt{2} + 2$		$-2 + \sqrt{2}$
	(c)	$-(2+\sqrt{2})$	(d)	$2-\sqrt{2}$
13.	(-12	$(7)^3 + (7)^3 + (5)^3 = $		
	(a)	1620	(b)	- 1620
	(c)	1260	(d)	- 1260
14.		is one of the zeros of the polynomia	al x^3 –	$6x^2 + 2x - 12$.
	(a)	-6	(b)	6
	(c)	3	(d)	12
15.	The	line joining $P(-2, 3)$ and $Q(4,3) =$	•	
	(a)	is parallel to the X-axis	(b)	is parallel to the Y-axis
	(c)	is perpendicular to the Y-axis	(d)	intersects both the axes
16.	∠ A	CD is an exterior angle of Δ ABC if \angle	ACD	=110° and \angle A = 60° then \angle B =
	(a)	 50°	(b)	60°
	(c)	120°	(d)	30°
17.	In Δ	ABC, \angle A = \angle C, AC = 5 and BC = 4, the second	nen the	e perimeter of \triangle ABC is .
	(a)	9	(b)	11
	(c)	13	(d)	17
18.	In Δ	ABC, P is the midpoint of AB and Q	is the	e midpoint of AC, then PQCB is a
	(a)	Parallelogram	(b)	Rectangle
	(c)	Trapezium	(d)	Rhombus

19.	Δ PQR \angle Q = 90°, PQ = 5 cm and PR = 13 cm, Then ar (PQR) = cm ² .			
	(a)	30	(b)	15
	(c)	45	(d)	60
20.	In a	circle with centre P, AB and CD are	congrı	nent chords. If \angle PAB = 40°, then
	∠ C	PD =		
	(a)	90°	(b)	110°
	(c)	100°	(d)	105°
21.	In c	yclic quadrilateral ABCD, \angle A = 70° and	∠B+	$\angle C = 160^{\circ}$. Then $\angle B = $
	(a)	130°	(b)	25°
	(c)	35°	(d)	50°
22.	The	perimeter of rhombus ABCD is 40 cm cm ² .	n and	BD = 16 cm. Then ar (ABCD) =
	(a)	48	(b)	96
	(c)	24	(d)	72
	(-)		()	,-
23.	The	height of a cone is 24 cm and its slar	nt heig	ght is 25 cm. Then its diameter is
		cm.		
	(a)	14	(b)	12
	(c)	7	(d)	49
24.	The	total surface area of a closed cylinder cm ² .	with r	adius 3.5 cm and height 6.5 cm is
	(a)	110	(b)	330
	(c)	220	(d)	440
25.	The	surface area of a sphere is 616 cm ² . Then	its ra	dius iscm.
	(a)	6	(b)	14
	(c)	8	(d)	7
JB-1	22	4		

26.	The 1	mean of first five prime number is	·	
	(a)	28	(b)	2.8
	(c)	5.6	(d)	1.4
27.	Whe	n a balanced die is thrown the probabil	ity of ge	etting 3 is
	(a)	$\frac{1}{6}$	(b)	$\frac{1}{4}$
	(c)	$\frac{1}{2}$	(d)	$\frac{1}{3}$
28.	$(\sqrt{3}$	$-\sqrt{2}$) ² is a/an number.		
	(a)	natural	(b)	irrational
	(c)	rational	(d)	whole
29.	In cy	velic quadrilateral ABCD, ∠ A – ∠ C =	= 20°. Th	nen ∠ A =
	(a)	80°	(b)	50°
	(c)	20°	(d)	100°
30.	PQR	S is square if $PQ = 10$ cm. Then $PR = \frac{1}{2}$		_ cm.
	(a)	$10\sqrt{2}$	(b)	$2\sqrt{10}$
	(c)	10	(d)	20
31.	rema	is the smallest number which inder 5 ?	when d	ivided by 20, 30 and 40 leaves a
	(a)	115	(b)	120
	(c)	125	(d)	130
32.	Prod	uct of three consecutive integers is divi	isible by	·•
	(a)	24	(b)	6
	(c)	20	(d)	8 but not by 24
JB-1	22		5	P.T.O.

33.	The	cubic polynomial $p(x) = x^3 - x$ has		ze	ro.	
	(a)	0		(b)	1	
	(c)	2		(d)	3	
34.		a two digit number, the digit at tens place is 7 and the sum of the digits is 8 times the git at unit place. Then the number is				
	(a)	70		(b)	71	
	(c)	17		(d)	78	
35.	The	quadratic equation has 3 as	s one	of its	roots.	
	(a)	$x^2 - x - 6 = 0$		(b)	$x^2 + x - 6 = 0$	
	(c)	$x^2 - x + 6 = 0$		(d)	$x^2 + x + 6 = 0$	
36.		e sum of the three consecutive terms ast is 252, then $d = \underline{\hspace{1cm}}$.	s of A	.P. is	48 and the product of the first and	
	(a)	2		(b)	3	
	(c)	4		(d)	16	
37. If $2k + 1$, 13 , $5k - 3$ are three consecutive terms of A.P. then $k = $				A.P. then k =		
	(a)	17		(b)	13	
	(c)	4		(d)	9	
38. Correspondence ABC \leftrightarrow DEF of \triangle ABC and \triangle DEF is similarity if AB + B DE + EF = 12 and AC = 6, then DF =			F is similarity if $AB + BC = 10$ and			
	(a)	6		(b)	5	
	(c)	7.2		(d)	16	
39.	DEF	lengths of the sides of Δ DEF are \leftrightarrow QPR. If the perimeter of Δ PQR DR is =			•	
	(a)	6		(b)	2	
	(c)	4		(d)	8	
JB-12	22		6			

40.	In \triangle XYZ, m \angle x : m \angle y : m \angle z = 1 : 2 : 3. If XY = 15, YZ =			
	(a)	5.7	(b)	17
	(c)	8	(d)	7.5
41.	If Δ	ABC, m \angle A = 90, \overline{AD} is a median. If A	D=6	AB = 10, then $AC =$.
	(a)	$2\sqrt{11}$	(b)	8
	(c)	7.5	(d)	16
42.	A(0,	0), B(3, 0), C(3, 4) are the vertices of a _		triangle.
	(a)	equilateral	(b)	right angled
	(c)	isosceles	(d)	acute angled
43.	The	violus ton 20° ton 25° ton 45° ton 65° ton 7	00 ia	
43.		value tan 20° tan 25° tan 45° tan 65° tan 7		
	(a)		(b)	
	(c)	0	(d)	$\sqrt{3}$
44.		tops of two poles of height 18 m and 1 es an angle of measure 30° with horizonta		·
	(a)	12 m	(b)	10 m
	(c)	8 m	(d)	4 m
45.	A ch	nord of \odot (0, 5) touches \odot (0, 3). Therefore	re the	length of the chord = .
	(a)	10	(b)	7
	(c)	8	(d)	6
46.	The	area of the largest triangle inscribed in a s	emi-c	ircle of radius & is
то.	(a)	8	(b)	16
ID 1	(c)	256	(d)	64 B.T.O.
JB-1	LL	7		P.T.O.

47.	The radii of a frustum of a is cm ³ .	cone are 5 cm and 9 cm	and height is 6 cm, then the volume
	(a) 320π	(b)	302π
	(c) 151π	(d)	98π
48.	If $\overline{x} - 2 = 3$ and $\overline{x} + 2 = 4$	45 then M =	
	(a) 24	(b)	22
	(c) 26	(d)	23
49.	The sum of the probability	of all the elementary eve	ents of an experiment is
	(a) 0	(b)	0.2
	(c) 1	(d)	0.8
50.	The diameter and the heig total surface area is		cm and 10 cm respectively then the
	(a) 44	(b)	308
	(c) 1010	(d)	748

JB-122 8