Seat No. : _____

JA-101

January-2021

B.B.A., Sem.-V

CC-304 : Operations Research & Q.T.

Time : 2 Hours]

[Max. Marks : 50

- **Instructions :** (1) All Questions in Section I carry equal marks.
 - (2) Attempt any **two** questions in Section I.
 - (3) Question -5 in Section II is compulsory.

SECTION – I

- 1. (A) What is LPP ? State its uses.
 - (B) Two types of hens are kept in a poultry farm. A type of hen costs ₹ 20 each and B type of hen costs ₹ 30 each. A type of hen lays 4 eggs per week and B type of hen lays 6 eggs per week. At the most 40 hens can be kept in the poultry. Not more than ₹ 1050 is to be spent on the hens. How many hens of each type should be purchased to get maximum eggs ?
- 2. (A) Solve the following transportation problem by NW Rule, Matrix minima method : 10

Source	Α	В	C	D	Supply
X	15	18	22	16	30
Y	15	19	20	14	40
Z	13	16	23	17	30
Demand	20	20	25	35	100

(B) Obtain basic feasible solution by Vogel's approximation method. Also obtain its optimum solution.10

1

Source	А	В	С	Supply
Х	6	4	14	10
Y	14	10	4	7
Ζ	4	10	8	8
Demand	12	8	5	

10

3. (A) Draw PERT diagram. Also calculate EST, EFT, LST, LFT and Float Time. State its Critical Path. 10

Activity	1-2	1-3	1-4	2-3	2-6	3-5	3-6	4-5	5-6	5-7	6-7
Duration	8	7	3	6	8	6	4	12	0	6	8
(Months)	Ũ		5	Ũ	Ũ	Ũ	-		Ũ	•	0

(B) Draw a PERT diagram for given details. Determine the critical path and the expected duration of completion of the entire project. 10

Activity Node	Optimistic Time	Most likely time	Pessimistic time
1-2	2	4	6
1-3	6	6	6
1-4	6	12	24
2-3	2	5	8
2-5	11	14	23
3-4	15	24	45
3-6	3	6	9
4-6	9	15	27
5-6	4	10	16

4. (A) Apply the principle of dominance in Game theory and solve the Adjoining game : 10

		Y		
	1	2	3	4
1	8	10	9	14
2	10	11	8	12
3	13	12	14	13

(B) Solve the following assignment problem for minimization :

D

Е

С

А

Р

Q

R

S

Т

В

	JA-101
--	--------

- 5. Do as Directed : (Any ten)
 - Hungarian Method is used to solve (1)
 - A transportation problem (a)
 - (b) A LP problem
 - (c) A travelling salesman problem
 - Both (a) and (b) (d)
 - (2)In a zero-sum game,
 - (a) what one player wins, the other loses.
 - (b) the sum of each player's winnings if the game is played many times must be zero.

6

- (c) the game is fair—each person has an equal chance of winning.
- long-run profits must be zero. (d)
- In the network shown in Fig., the critical path is (3)

$$\begin{array}{c} 3 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline \end{array}$$

- (b) 1-2-3-4-5-6 1-2-4-5-6 (a)
- (c) 1-2-3-5-6 (d) 1-2-4-3-5-6
- (4) Every LPP is associated with another LPP is called
 - (a) Primal (b) Dual
 - (c) Non-linear programming (d) None
- (5) Operations Research started just before World War II in Britain with the establishment of teams of scientists to study the strategic and tactical problems involved in military operations.
 - (a) True
- (b) False The main limitation of operations research is that it often ignores the human (6) element in the production process.
 - (b) False (a) True
 - Which of the following is not the phase of OR methodology? (7)
 - Formulating a problem (b) Constructing a model (a)
 - Establishing controls (d) Controlling the environment (c)
 - Operations research was known as an ability to win a war without really going in (8) to
 - (a) Battle field (b) Fighting
 - (d) Both (a) and (b) The opponent
 - OR has a characteristics that it is done by a team of (9)
 - (b) Mathematicians Scientists
 - All of the above Academics (d)
 - (10) What enables us to determine the earliest and latest times for each of the events and activities and thereby helps in the identification of the critical path?
 - Programme Evaluation Review Technique (PERT) (a) (b)
 - Deployment of resources (d) Both (a) and (b) (c)

(c)

(a)

(c)

- (11) Graphical optimal value for Z can be obtained from
 - (a) Corner points of feasible region
 - (b) Both (a) and (c)
 - (c) Corner points of the solution region
 - (d) None of the above

(a)

- (12) In game theory, the outcome or consequence of a strategy is referred to as the
 - payoff (b) penalty
 - (c) reward (d) end-game strategy.
- (13) If there were n workers & n jobs, there would be
 - n! solutions (b) (n-1)! solutions (a)
 - (n!)n solutions (d) n solutions (c)
- (14) In a transportation problem, when the number of occupied routes is less than the number of rows plus the number of columns -1, we say that the solution is :
 - Unbalanced Infeasible (a) (b)
 - (c) Optimal (d) Degenerate
- (15) Which of the following methods is used to verify the optimality of the current solution of the transportation problem?
 - (a) Modified distribution method
 - (b) Least cost method
 - (c) Vogel's approximation method
 - (d) All of the above
- (16) When total supply is equal to total demand in a transportation problem, the problem is said to be
 - (b) Unbalanced (a) Balanced
 - (d) None of the above (c) Degenerate
- (17) The solution to a transportation problem with 'm' rows (supplies) & 'n' columns (destination) is feasible if number of positive allocations are
 - (b) m*n (a) m+n
 - (c) m+n+1(d) m+n-1

are used to "balance" an assignment or transportation problem. (18)or

- (a) Destinations; sources
- (b) Units supplied; units demanded
- (c) Large cost coefficients; small cost coefficients
- (d) Dummy rows; dummy columns
- (19) In assignment problem of maximization, the objective is to maximize
 - Profit (a) Optimization (b)
 - (d) None of the above (c) Cost
- (20) Total Float = (20)
 - (a) LFij EFij
 - (c) Both (a) and (b) (d) None of given

- (b) LSij ESij