3007N127 Candidate's Seat No:_____

B.Sc. Sem.-6 Examination

CC - 309

Bio-Technology

Time: 2-00 Hours

July 2021

[Max. Marks: 50

1.	(A) Describe culture media ingredients and formulation used for industri	al		
	fermentation.	7		
	(B) Explain process for sterilization of Air for fermentation process.	7		
2.	(A) Explain selection and screening of industrially important organisms.	7		
	(B) Describe the methods used in strain improvement of industrial cultures.	7		
3	(A) Describe medium, process and recovery for the production of SCP.	7		
Э.	(B) Write note on cultivation of common edible mushrooms.	7		
Λ	(A) Describe the fermentative production of Bacillus thuringiensis.	7		
·¥.	(B) Explain medium and fermentation process of yeasts biomass.	7		
-	(A) Describe overproduction of amino acids by physiological manipulation	on		
Э.	limiting biotin concentration.	7		
	(B) Describe the fermentative production of Vitamin B12.	7		
6.	(A) Explain overproduction of amino acids using auxotrophic mutants.	7		
	(R) Explain two-stage process for the fermentative production of Alcohol.	7		
7.	(A) What is secondary metabolism? Explain production and genetic control of			
, ,	secondary metabolism.	7		
	(B) Explain uses of ergot alkaloids and its microbial production.	7		
Ω	(A) Discuss in detail the fermentative production of Xanthan gum.	7		
0.	(B) Describe the fermentative production of Cephalosporin.	7		
	(b) Describe the termentative production of our			
9. Answer the followings (Any Eight) 8				
0.1	Select the one that is not a fermentation product:			
Q-1				
A	Antibiotics			
В	Citric Acid			
С	Alcohol			
D	Sucrose	in		
Q-2	Which of the following is/are the substrate/s used as a carbon source	•••		
	ntation Industry?			
A	Molasses			
В	Malt Extract			
C	Methanol			
D	All of the above			
Q-3	What is the role of antifoaming agent in fermentation technology?			
A	They are used to control oxygen level of the medium			
В	They are used to maintain the temperature of the medium			
С	They are used to lower the surface tension of the medium			
D	All the above			
Q-4	Sterilization of the media is most commonly achieved by:			
Ă	Lyophillization			
В	Heat sterilization			
C	Incineration			
D	Boiling			
_	-			
Q-5	The most common method used for citric acid production is			

(P.T.O)

A B C D	Surface fermentation Submerged fermentation Both A & B None
Q-6 A B C D	Which of the following is a good source of nitrogen as well as growth factors? Urea Ethanol Yeast extract Dextrin
Q-7 A B C	Baker's yeast production is carried out by: An aerobic fed-batch process ICI pressure cycle fermenter Both (A) and (B) None of the above
Q-8 A B C	Which of the following organisms is not used for the production of citric acid? Aspergillus wentii Candida oleophila Saccharomyces cerevisiae Candida oleophila
Q-9 A B C D	Whey is rich in which carbohydrate? Glucose Lactose Fructose Sucrose
Q-10 A B C D	the analogue of valine used in the repression of Salmonella sp. Leucine Isoleucine Trifluoroleucine Cephamycin
Q-11 A B C D	Microbial biomass or protein extract used as food or feed additive Yeast Extract Single cell protein Peptone All the above
Q-12 A B C D	Identify the RNA synthesis inhibitor from the following: Tetracyclins Cephalosporins Rifamycin Puromycin

is knov A	A novel technology developed to produce SCP by utilizing starchy wastes by yeasts vn as: Symba process ICI pressure cycle fermenter Subterminal oxidation None of the above
Q-14 of fruit A B C D	The term used for the mushroom inoculum containing spores and/or small pieces ting body is: Compost Agaricus bisporus Phallin and muscarine Spawn
Q-15 A B C D	Overproduction of secondary metabolites based on genetic engineering are Mutation Recombination Molecular genetic improvement All of these
Q-16 A B C D	What is Sulfite waste liquor? It is a by-product of corn wet-milling It is a finely ground, yellow flour made from the embryo of cottonseed It is the spent sulfite liquor from pulp and paper industry All the above
Q-17 A B C D	Sterols are: Organic molecules Occur naturally Cholesterol All of these
Q-18 A B C D	The terminology used to describe the type of algal culture is: Indoor/Outdoor Batch, continuous and semi-continuous Axemic/Xenic All the above
Q-19 A B C D	Xanthan is commercially produced by Pseudononas aeruginosa Xanthomonas campestris Pseudomonas elodea Leuconostoc mesenteroides
Q-20 A B C D	Optimum growth of Rhizobia occurs attemperature. 15 to 20 °C 28 to 30 °C 35 to 37 °C 10 to 15 °C