\qquad

JD-111

July-2021

B.Sc., Sem.-VI

309 : MATHEMATICS

(Analysis-III)

Time : 2 Hours]
[Max. Marks : 50

Instruction : (1) Attempt any three questions in Section-I.
(2) Section-II is a compulsory section of short questions.
(3) Notations are usual everywhere.
(4) The right hand side figures indicate marks of the sub question.

SECTION - I

Attempt any THREE of the following questions :

1. (A) Define a metric space. Prove that a subset G of a metric space X is open if and only if it is a union of open spheres.
(B) Let X and Y be metric spaces and f a mapping of X into Y then prove that f is continuous if and only if $f^{-1}(\mathrm{G})$ is open in X whenever G is open in Y.
2. (A) Prove that a subset F of a metric space X is closed in X if and only if its complement F^{\prime} is open in X.
(B) Show that a real function d defined on ordered pairs of elements of a nonempty set X satisfying the conditions
$\mathrm{d}(x, \mathrm{y})=0 \Leftrightarrow x=\mathrm{y}$, and $\mathrm{d}(x, \mathrm{y}) \leq \mathrm{d}(x, \mathrm{z})+\mathrm{d}(\mathrm{y}, \mathrm{z})$ is a metric on X .
3. (A) Prove that Compact subsets of metric spaces are closed.
(B) Let X and Y be metric spaces and f a mapping of X into Y then prove that f is continuous at x_{0} if and only if $f\left(x_{\mathrm{n}}\right) \rightarrow f\left(x_{0}\right)$ whenever $x_{\mathrm{n}} \rightarrow x_{0}$.
4. (A) Prove that closed subsets of a compact set are compact in a metric space.
(B) A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(\mathrm{~V})$ is open in X for every open set V in Y .
5. (A) State and prove Weierstrass M-test. Show that $f_{\mathrm{n}}(x)=\mathrm{n}^{2} x^{\mathrm{n}}(1-x) ; x \in[0,1]$ converges pointwise to a function which is continuous on $[0,1]$.
(B) Let $\left(f_{\mathrm{n}}\right)$ be a sequence of functions in $\mathrm{R}[\mathrm{a}, \mathrm{b}]$ converging uniformly to f .

Then $f \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ and $\lim _{\mathrm{n} \rightarrow \infty} \int_{\mathrm{a}}^{\mathrm{b}} f_{\mathrm{n}}(x) \mathrm{d} x=\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x$.
6. (A) Let $\left(f_{\mathrm{n}}\right)$ be a sequence of continuous function of $\mathrm{E} \subset \mathrm{C}$ converges uniformly to f on E then prove that f is continuous on E .
(B) Let f_{n} satisfy (1) $f_{\mathrm{n}} \in \mathrm{D}[\mathrm{a}, \mathrm{b}](2)\left(f_{\mathrm{n}}\left(x_{0}\right)\right)$ converges for $x_{0}=\in \mathrm{D}[\mathrm{a}, \mathrm{b}]$
(3) f_{n} converges uniformly on $[\mathrm{a}, \mathrm{b}]$ then prove that f_{n} converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to a function f.
7. (A) State and prove Abel's limit theorem.
(B) Show that for $-1 \leq x \leq 1, \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots+(-1)^{\mathrm{n}-1} \frac{x^{\mathrm{n}}}{\mathrm{n}}+\cdots$. Hence evaluate $\log 2$.
8. (A) For every $x \in \mathrm{R}$ and $\mathrm{n}>0$

Prove that $\Sigma_{\mathrm{k}=0}^{\mathrm{n}}(\mathrm{n} x-\mathrm{k})^{2}\binom{\mathrm{n}}{\mathrm{k}} x^{\mathrm{k}}(1-x)^{\mathrm{n}-\mathrm{k}}=\mathrm{n} x(1-x) \leq \frac{\mathrm{n}}{4}$.
(B) State and prove Weierstrass Approximation theorem.

SECTION - II

9. Attempt any FOUR of the following in short :
(1) Prove that X and ϕ are open sets.
(2) Define : Metric Space.
(3) If F is closed and K is compact then prove that $\mathrm{F} \cap \mathrm{K}$ is compact.
(4) Define : Connected set.
(5) Define : Uniform convergence.
(6) Prove by Taylor's series $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$
(7) Is $\mathrm{f}_{\mathrm{n}}(x)=\frac{1}{1+\mathrm{n} x}(x \geq 0)$ continuous? Justify.
(8) Show that $\log 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$
