Seat No. : \qquad

JC-126

July-2021

B.Sc., Sem.-VI

308 : Mathematics

(Analysis - II)
Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions in Section - I.
(2) Section - II is a compulsory section of short questions.
(3) Notations are usual everywhere.
(4) The right hand side figures indicate marks of the sub-questions.

SECTION - I

1. (A) If $f \in R[a, b]$ and $g \in R[a, b]$, then prove that $f+g \in R[a, b]$ and

$$
\int_{\mathrm{a}}^{\mathrm{b}}(\mathrm{f}+\mathrm{g})=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}+\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~g} .
$$

(B) Let $\mathrm{f}(x)=2 x$ on $[0,1]$. For $\mathrm{n} \in \mathbb{N}$, define

$$
P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots, \frac{n-1}{n}, 1\right\} \text { then compute } \lim _{n \rightarrow \infty} U_{P_{n}} \text { and } \lim _{n \rightarrow \infty} L_{P_{n}} \text {. Is the }
$$

function integrable? If so, find the value of the integral.
2. (A) State and prove First Fundamental Theorem of Calculus.
(B) State Second Mean Value Theorem of Integral Calculus. Find a point c in $\left[0, \frac{\pi}{2}\right]$ such that $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x=1$.
3. (A) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be real sequences. Then prove that
(i) $\inf x_{\mathrm{n}} \leq \underline{\lim } x_{\mathrm{n}} \leq \overline{\lim } x_{\mathrm{n}} \leq \sup x_{\mathrm{n}}$
(ii) $\overline{\lim }\left(x_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}}\right) \leq \overline{\lim } x_{\mathrm{n}}+\overline{\lim } \mathrm{y}_{\mathrm{n}}$
(B) State and prove condensation test. Hence check the convergence of

$$
\Sigma_{\mathrm{n}=2}^{\infty} \frac{1}{\mathrm{n}(\log \mathrm{n})^{\alpha}}, \alpha \in \mathbb{R}
$$

4. (A) Is every Cauchy sequence in \mathbb{C} is convergent? Justify. 7
(B) State Cauchy's root test. Hence check the convergence of $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{n}}$.
5. (A) State and prove Fundamental Theorem on alternating series.
(B) Define Conditionally convergent series. Check whether $\Sigma_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \frac{1}{\sqrt{\mathrm{n}+1}}$ is conditionally convergent.
6. (A) If $\Sigma\left|\mathrm{a}_{\mathrm{n}}\right|$ converges, then prove that the series $\Sigma \mathrm{a}_{\mathrm{n}}$ converges. Is the converse true ? Justify.
(B) Find the radius of convergence of the following power series whose $\mathrm{n}^{\text {th }}$ terms are given below :
(1) $(2 n+1) z^{n}$
(2) $\frac{n^{2}}{n!} z^{n}$
7. (A) State and prove Binomial series theorem.
(B) Derive Taylor's formula with the integral form of the remainder for $\mathrm{f}(x)=\cos x$ about $\mathrm{a}=0$ in $(-\infty, \infty)$.
8. (A) For $-1<x<1$, prove that $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{\mathrm{n}-1} \frac{x^{\mathrm{n}}}{\mathrm{n}}+\cdots$ (Use Cauchy's form of remainder).
(B) Find a power series solution of $y^{\prime \prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$.

SECTION - II

9. Attempt any four short questions:
(i) Does $|f| \in R[a, b]$ implies $f \in R[a, b]$? Justify.
(ii) Discuss convergence of the series $\Sigma_{\mathrm{n}=1}^{\infty} \frac{1}{2^{\mathrm{n}}}$.
(iii) Give example of a convergent series which is not absolutely convergent.
(iv) The Taylor's series of f converges to $\mathrm{f}(x)$ at $x=$ a iff
$\mathrm{R}_{\mathrm{n}}(x) \rightarrow$ \qquad as $\mathrm{n} \rightarrow$ \qquad . (Fill in the blanks)
(v) If $\lim _{\mathrm{n} \rightarrow \infty} x_{\mathrm{n}} \neq 0$ then $\sum_{\mathrm{n}=0}^{\infty} x_{\mathrm{n}}$ is \qquad .
(vi) Write series of e^{x}. Is e rational?
