Seat No. :

JC-126

July-2021

B.Sc., Sem.-VI

308 : Mathematics (Analysis - II)

Time : 2 Hours]

- **Instructions :** (1) Attempt any three questions in Section -I.
 - (2) Section II is a *compulsory* section of short questions.
 - (3) Notations are usual everywhere.
 - (4) The right hand side figures indicate marks of the sub-questions.

SECTION - I

1. (A) If
$$f \in R$$
 [a, b] and $g \in R$ [a, b], then prove that $f + g \in R$ [a, b] and

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f+\int_{a}^{b} g.$$
7

(B) Let
$$f(x) = 2x$$
 on $[0, 1]$. For $n \in \mathbb{N}$, define

$$P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n}, 1\right\} \text{ then compute } \lim_{n \to \infty} U_{P_n} \text{ and } \lim_{n \to \infty} L_{P_n}. \text{ Is the function integrable ? If so, find the value of the integral.}$$
7

- 2. (A) State and prove First Fundamental Theorem of Calculus.
 - (B) State Second Mean Value Theorem of Integral Calculus. Find a point c in $\left|0, \frac{\pi}{2}\right|$

such that
$$\int_{0}^{1} \frac{1}{1+x^2} dx = 1.$$
 7

3. (A) Let $\{x_n\}$ and $\{y_n\}$ be real sequences. Then prove that

(i)
$$\inf x_n \le \underline{\lim} x_n \le \lim x_n \le \sup x_n$$

(ii) $\overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n$ 7

1

JC-126

7

[Max. Marks : 50

(B) State and prove condensation test. Hence check the convergence of

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}}, \alpha \in \mathbb{R}.$$

- 4. (A) Is every Cauchy sequence in \mathbb{C} is convergent? Justify.
 - (B) State Cauchy's root test. Hence check the convergence of $\sum_{n=1}^{\infty} \frac{1}{(n+1)^n}$.
- 5. (A) State and prove Fundamental Theorem on alternating series.
 - (B) Define Conditionally convergent series. Check whether $\sum_{n=0}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}$ is conditionally convergent. 7
- 6. (A) If $\Sigma |a_n|$ converges, then prove that the series Σa_n converges. Is the converse true ? Justify.
 - (B) Find the radius of convergence of the following power series whose nth terms are given below :

(1)
$$(2n+1)z^n$$
 (2) $\frac{n^2}{n!}z^n$ 7

- 7. (A) State and prove Binomial series theorem.
 - (B) Derive Taylor's formula with the integral form of the remainder for $f(x) = \cos x$ about a = 0 in $(-\infty, \infty)$.
- 8. (A) For -1 < x < 1, prove that $\log (1 + x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ (Use Cauchy's form of remainder). 7
 - (B) Find a power series solution of y'' + 4y = 0 with y(0) = 1 and y'(0) = 0. 7

SECTION – II

- 9. Attempt any **four** short questions :
 - (i) Does $|f| \in R [a, b]$ implies $f \in R [a, b]$? Justify.
 - (ii) Discuss convergence of the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.
 - (iii) Give example of a convergent series which is not absolutely convergent.
 - (iv) The Taylor's series of f converges to f(x) at x = a iff $R_n(x) \rightarrow ___$ as $n \rightarrow ___$. (Fill in the blanks)
 - (v) If $\lim_{n \to \infty} x_n \neq 0$ then $\sum_{n=0}^{\infty} x_n$ is _____.
 - (vi) Write series of e^x . Is e rational ?

JC-126

8

7

7

7

7

7

7