Seat No. : \qquad

JB-106

July-2021

B.Sc., Sem.-VI

307 : Physics

(Mathematical Physics, Classical Mechanics and Quantum Mechanics)

Time : 2 Hours]

[Max. Marks : 50

સૂચના : (1) વિભાગ-Iના દરેક પ્રશ્નોના ગુણ સરખા છે.
(2) વિભાગ-Iમાંથી ગમે તે ત્રણ પ્રશ્નોના ઉત્તર લખો.
(3) વિભાગ-IIમાં પ્રથમ પ્રશ્ન ફ૨જિયાત છે.
વિભાગ - I

1. (A) બેસલ વિધેયનો ઉિપયોગ કરીને સાબિત કરો કે
(i) $\mathrm{J}_{\mathrm{n}}(-x)=(-1)^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(x)$ જ્યાં n પૂર્ણાંક છે.
(ii) $\mathrm{W}\left[\mathrm{J}_{\mathrm{n}}(x), \mathrm{J}_{-\mathrm{n}}(x)\right]=-\frac{2}{\pi x} \sin (\pi \mathrm{n})$ જ્યાં n પૂર્ણાંક નથી.
(B) રીકરન્સ સંબંધનો ઉપયોગ કરી સાબિત કરો કे

$$
\mathrm{J}_{\mathrm{n}+3}(x)+\mathrm{J}_{\mathrm{n}+5}(x)=\frac{2(\mathrm{n}+4)}{x} \mathrm{~J}_{\mathrm{n}+4}(x)
$$

2. (A) સાબિત કરો કे $\cos x=\mathrm{J}_{0}(x)+2 \sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \mathrm{J}_{2 \mathrm{n}}(x)$.
(B) સાબિત કરો કે $2 \mathrm{~J}_{\mathrm{n}}^{1}(x)=\mathrm{J}_{\mathrm{n}-1}(x)-\mathrm{J}_{\mathrm{n}+1}(x)$.
3. (A) δ સકેતનો ઉપયોગ કરીને ઓઈલ૨ લાંગ્રાન્જના ગતિના સમીક૨ણ મેળવો.
(B) હેમિલ્ટોનીયન સંફૂપણ અને લાંગ્રાન્જીયન સંરૂપણ વચ્ચ્ચેનો ભેદ સ્પષ્ટ કરો.
4. (A) લાંગ્રાન્જના અનિર્ધારિત ગુણાંક સમજાવો.
(B) સાબિત કરો કે સમતલમાં બે બિંદુઓ વચ્ચેનું ન્યૂનતમ અંત૨ સીધી રેખા છે.
5. (A) હાઈડ્રોજન પ૨માણુ માટે ત્રિજ્યાવર્તી શ્રોડીંજ૨ સમીકરણ લખો. શ્રોડીંન્જ૨ સમીક૨ણનો ઉકકેલ મેળવી તેની ઊર્જા આઈீગન મૂલ્ય $\mathrm{E}_{\mathrm{n}}=\frac{-13.6 \mathrm{eV}}{\mathrm{n}^{2}}$ છે તેમ મેળવો.
(B) સ્થિતિમાન કૂપના અંદ૨ના વિસ્તા૨માં ત્રિજ્યાવર્તી શ્રોડીન્જ૨ સમીક૨ણ લખો અને તેના અંદ૨ના વિસ્તા૨માં ઉકેલ મેળવો.
6. (A) હાઇડ્રોજન પ૨માણુુ માટે ત્રિજ્યાવર્તી શ્રોડીંજ૨ સમીકરણ લખો. તેને પે૨ાબોલિક યામોમાં વિભાજીત કरो.
(B) ત્રિપારિમાણિક સમ-દિકધર્મી દોલક માટે દર્શાવો કે $\mathrm{E}_{\mathrm{n}}=\left(\mathrm{n}+\frac{3}{2}\right) \hbar \mathrm{w}$ હોય છે.
7. (A) સાબિત કરો કे :
(i) $\hat{x}^{\prime}=\hat{x}-\varepsilon_{\mathrm{L}}$
(ii) $\hat{\mathrm{p}}_{x}^{\prime}=\hat{\mathrm{p}}_{x}+\theta \hat{\mathrm{p}}_{\mathrm{y}}$
(B) સાબિત કરો કે :
(i) $(\mathrm{AB})^{+}=\mathrm{B}^{+} \mathrm{A}^{+}$
(ii) $\left(\mathrm{A}^{+}\right)^{+}=\mathrm{A}$
8. (A) ડિરાક સકેતનો ઉપયોગ કરીને સ્વસંલગ્ન સંકારકના આઈ゚ગન સદિશો માટે લંબચ્છેદી પ્રમેય સાબિત કरो.
(B) Unitary કા૨ક સમજાવો. જો Â કોઈ સ્વસંલગ્ન સંકારક હોય અને α કોઈ વાસ્તવિક સંખ્યા હોય તો દર્શાવો કે $\mathrm{e}^{\mathrm{i} \alpha \hat{A}}$ એ unitary છે.

વિભાગ-II

1. ટૂંકમાં જવાબ લખો : (કોઈૅપણ 16 માંથી 8)
(1) લીજેન્દ્રનું વિકલ સમીકરણ લખો.
(2) $\mathrm{J}_{\frac{1}{2}}(x)=$ \qquad .
(3) $\mathrm{P}_{1}(x)=$ \qquad
(4) $\mathrm{P}_{\mathrm{n}}(x)$ નું સર્જક વિધેય લખો.
(5) ઓઈલ૨ લાંગ્રાન્જનું સમીકરણ લખો.
(6) ભૂમાયત शું છે?
(7) વિન્યાસ અવકાશને વ્યાખ્યાયિત કરો.
(8) એક પારિમાણિક દોલકનો ફેજ સ્પેશની રેખાકૃતિ દોરો.
(9) પ્રોજેકશન કારકની વ્યાખ્યા આપો.
(10) હર્મીશીયન કારકની વ્યાખ્યા આપો.
(11) હાઇડ્રોજન પ૨માણુની સ્થિતિઊર્જાનું સૂત્ર લખો.
(12) સમ-દિકધર્મી દોલક એટલે શું ?
(13) વિષમ-દિકધર્મી દોલક એટલે શું ?
(14) સ્થિતિમાન કૂપ એટલે શું?
(15) $1 \mathrm{R}_{\mathrm{y}} \mathrm{d}=$ \qquad eV.
(16) $1 \mathrm{eV}=$ \qquad J.
\qquad

JB-106

July-2021

B.Sc., Sem.-VI

307 : Physics
(Mathematical Physics, Classical Mechanics and Quantum Mechanics)

Time : 2 Hours]

[Max. Marks : 50
Instructions: (1) All question in Section - I carry equal marks.
(2) Attempt any Three question in Section - I.
(3) Question 1 in Section - II is COMPULSORY.

Section - I

1. (A) Using the Bessel's function prove that.
(i) $\mathrm{J}_{\mathrm{n}}(-x)=(-1)^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(x)$ where n is integer.
(ii) $\mathrm{W}\left[\mathrm{J}_{\mathrm{n}}(x), \mathrm{J}_{-\mathrm{n}}(x)\right]=-\frac{2}{\pi x} \sin (\pi \mathrm{n})$ if n is not integer.
(B) Using recurrence relation prove that:

$$
\mathrm{J}_{\mathrm{n}+3}(x)+\mathrm{J}_{\mathrm{n}+5}(x)=\frac{2(\mathrm{n}+4)}{x} \mathrm{~J}_{\mathrm{n}+4}(x)
$$

2. (A) Prove that $\cos x=\mathrm{J}_{0}(x)+2 \sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \mathrm{J}_{2 \mathrm{n}}(x)$.
(B) Prove that $2 \mathrm{~J}_{\mathrm{n}}^{1}(x)=\mathrm{J}_{\mathrm{n}-1}(x)-\mathrm{J}_{\mathrm{n}+1}(x)$.
3. (A) Using δ notation derive Euler Lagrange's equation of motion.
(B) Distinguish between Hamiltonian formulation and Langrangian formulation.
4. (A) Explain Lagrange's undermined multipliers.
(B) Prove that the shortest distance between two points in a plane is a straight line.
5. (A) Write the radial Schrodinger equation for H atom. Solve the radial Schrodinger equation to obtain energy eigen values $E_{n}=\frac{-13.6 \mathrm{eV}}{n^{2}}$.
(B) Write down Schrodinger equation inside the potential well. Solve Schrodinger equation in it's inside region of potential well.
6. (A) Write down Schrodinger equation for H -atom. Separate in this equation Parabolic co-ordinates.
(B) For three dimensional Isotropic Oscillator, show that energy Eigen values $\mathrm{E}_{\mathrm{n}}=\left(\mathrm{n}+\frac{3}{2}\right) \hbar \mathrm{w}$.
7. (A) Prove that:
(i) $\hat{x}^{\prime}=\hat{x}-\varepsilon_{\mathrm{L}}$
(ii) $\hat{\mathrm{p}}_{x}^{\prime}=\hat{\mathrm{p}}_{x}+\theta \hat{\mathrm{p}}_{\mathrm{y}}$
(B) Prove that:
(i) $(\mathrm{AB})^{+}=\mathrm{B}^{+} \mathrm{A}^{+}$
(ii) $\left(\mathrm{A}^{+}\right)^{+}=\mathrm{A}$
8. (A) Show that the orthogonality theorem for Eigen vector of a self adjoint operator using Dirac notation.
(B) Explain Unitary Operator, if $\hat{\mathrm{A}}$ is any Hermitian Operator and α is any real number. Prove that $\mathrm{e}^{\mathrm{i} \alpha \hat{\mathrm{A}}}$ is unitary.

SECTION-II

1. Answer in short : (Any $\mathbf{8}$ out of $\mathbf{1 6}$)
(1) Write down Legendre differential equation.
(2) $\mathrm{J}_{\frac{1}{2}}(x)=$ \qquad .
(3) $\mathrm{P}_{1}(x)=$ \qquad .
(4) Write down generating function for $\mathrm{P}_{\mathrm{n}}(x)$.
(5) Write down Euler Lagrange's equation.
(6) What is Geodesis?
(7) Define Configuration Space.
(8) Draw Phase space diagram of one dimensional oscillator.
(9) Define Projection Operator.
(10) Define Hermitian Operator.
(11) Write down Potential energy equation for H -atom.
(12) What is isotropic oscillator?
(13) What is anisotropic oscillator?
(14) What is Square Well potential ?
(15) $1 \mathrm{R}_{\mathrm{y}} \mathrm{d}=$ \qquad eV.
(16) $1 \mathrm{eV}=$ \qquad J.
