\qquad

JB-107

July-2021

B.Sc., Sem.-VI

307 : Mathematics

(Abstract Algebra - II)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (i) Attempt any THREE questions in Section - I.
(ii) Section - II is a compulsory section of short questions.
(iii) Notations are usual everywhere.
(iv) The right hand side figures indicate marks of the sub question.

SECTION - I

Attempt any THREE of the following questions :

1. (a) Define a ring with unity. If R is a ring with unity 1 then prove the followings properties in R:
(1) $\mathrm{a} \cdot(-\mathrm{b})=(-\mathrm{a}) \cdot \mathrm{b}=-(\mathrm{a} \cdot \mathrm{b}), \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.
(2) $(-1) \cdot(-1)=1$.
(b) Show that the set $\mathrm{A}=\left\{\left[\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right] / \alpha \in \mathrm{Z}\right\}$ forms an integral domain under usual addition and multiplication of matrices.
2. (a) Prove that every finite integral domain is a field. Also give an example of an infinite integral domain which is not a field.
(b) Define a Boolean ring and prove that a Boolean ring is a commutative ring. Also give an example of a Boolean ring.
3. (a) Define a subring and prove that a non empty subset U of a ring R is a subring of R if and only if (i) $a-b \in U$ and (ii) $a \cdot b \in U$ for all $a, b \in U$.
(b) Show that $\mathrm{U}=\left\{\left[\begin{array}{ll}\alpha & 0 \\ 0 & \alpha\end{array}\right] / \alpha \in \mathrm{R}\right\}$ is a subring $\mathrm{M}_{2}(\mathrm{R})$. Is it a field ? Justify your answer.
4. (a) Prove that a field has no proper ideal.
(b) Define a ring Homomorphism. If $\Phi:(\mathrm{R},+, \cdot) \rightarrow\left(\mathrm{R}^{\prime}, \oplus, \odot\right)$ is a ring homomorphism and I is an ideal of R then prove that $\Phi(\mathrm{I})$ is an ideal of $\Phi\left(\mathrm{R}^{\prime}\right)$.
5. (a) For nonzero polynomials $\mathrm{f}, \mathrm{g} \in \mathrm{D}[x]$ Prove that $[\mathrm{f} \cdot \mathrm{g}]=[\mathrm{f}]+[\mathrm{g}]$.
(b) Using Division algorithm of $\mathrm{f}(x)$ and $\mathrm{g}(x) \in \mathrm{Z}_{5}[x]$ express $\mathrm{f}(x)$ into the form $\mathrm{q}(x)$ $\mathrm{g}(x)+\mathrm{r}(x)$ for $\mathrm{f}(x)=x^{4}-3 x^{3}+2 x^{2}+4 x-1$ and $\mathrm{g}(x)=x^{2}-2 x+3 \in \mathrm{Z}_{5}[x]$.
6. (a) Suppose $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in Z[x]$ and suppose $\frac{p}{q}$ in the simplest form (i.e. $(p, q)=1)$ is a solution of the equation $f(x)=0$. Then prove that $p \mid a_{0}$ and $q \mid a_{n}$.
(b) State the Eisenstein's criterion and prove that whenever p is a prime then $\mathrm{f}(x)=x^{\mathrm{p}-1}+x^{\mathrm{p}-2}+\ldots+x+1$ is irreducible over Q .
7. (a) Show that $\mathrm{Q}[\mathrm{i}]=\{\mathrm{a}+\mathrm{bi} / \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ is a subfield of the field C of complex numbers.
(b) If F_{1} and F_{2} are subfields of a field F then prove that $\mathrm{F}_{1} \cap \mathrm{~F}_{2}$ also is a subfield of F .
8. (a) Define a prime ideal.

Also prove that a maximal ideal in a commutative ring with unity is also a prime ideal.
(b) Show that $\mathrm{I}=<x^{3}-3 x-1>$ is a maximal ideal in $\mathrm{Z}_{3}[x]$.

SECTION - II

9. Attempt any FOUR of the fallowing in short :
(i) Give an example of a division ring which is not a field.
(ii) Give an example of a finite non-commutative ring and an infinite commutative ring.
(iii) Give an example of a subring of a ring which is not an ideal of the ring.
(iv) Give an example of a division ring which is not a field.
(v) Define a polynomial in integral domain D and the degree of a nonzero polynomial in D .
(vi) Define a Principal Ideal and give one example of it.
