\qquad

XZ-129

April-2013

B.Sc. (Sem.-IV)

Mathematics: 204
(Advance Calculus-II)
Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All the questions are compulsory.
(2) Each question carry 14 marks.
(3) Notations are usual.

1. (a) Change the order of integration in the integral $\int_{0}^{a} \int_{x^{2} / a}^{2 a-x} x y d y d x$ and hence evaluate it.

OR

Change the order of integration in the integral $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$ and hence evaluate it.
(b) Evaluate : $\int_{0}^{3} \int_{0}^{\sqrt{9-x}} x y \mathrm{~d} x \mathrm{dy}$

Evaluate : $\int_{1}^{\mathrm{e}} \int_{1}^{\log y} \int_{1}^{\mathrm{e}^{x}} \log \mathrm{zdz} \mathrm{d} x \mathrm{dy}$
2. (a) State and prove Duplication formula for beta and gamma function.

OR
Define Divergence of a vector function in R^{3}. Prove that $\operatorname{div}(\overline{\mathrm{f}} \times \overline{\mathrm{g}})=\overline{\mathrm{g}} \cdot \operatorname{curl} \overline{\mathrm{f}}-\overline{\mathrm{f}} \cdot \operatorname{curl} \overline{\mathrm{g}}$
(b) (i) Prove that $\operatorname{div}\left(\mathrm{r}^{\mathrm{n}} \overline{\mathrm{r}}\right)=(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}}$
(ii) Prove that $\nabla^{2}\left(\mathrm{r}^{\mathrm{n}} \overline{\mathrm{r}}\right)=\mathrm{n}(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}-2} \overline{\mathrm{r}}$
OR

Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
3. (a) State and prove Green's theorem.

OR

State and prove Stoke's theorem.
(b) Using Green's theorem evaluate $\oint_{C}\left(3 x^{2}-8 y^{2}\right) \mathrm{d} x+(4 y-6 x y) d y$, where C is the boundary of the region bounded by $\mathrm{Y}^{2}=\mathrm{X}$ and $\mathrm{X}^{2}=\mathrm{y}$.

OR

Verify Gauss Divergence theorem for the vector field $\overline{\mathrm{F}}$ on the region V , where $\overline{\mathrm{F}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{XY} \overline{\mathrm{i}}+\mathrm{YZ} \overline{\mathrm{j}}+\mathrm{ZX} \overline{\mathrm{k}}, \mathrm{V}$ is the solid cylinder $\mathrm{X}^{2}+\mathrm{Y}^{2} \leq 1,0 \leq \mathrm{Z} \leq 1$.
4. Attempt any two :
(a) Define Partial Differential Equation. State Lagrange's equation for P.D.E and discuss the method for solving it.
(b) Solve P.D.E. $x^{3} \mathrm{p}+\mathrm{y}^{3} \mathrm{q}=\left(x^{2}-x y+y^{2}\right) \mathrm{z}$.
(c) Derive P.D.E. for $\mathrm{f}(\mathrm{X}-\mathrm{Z}, \mathrm{Y}-\mathrm{Z})=0$.
5. Answer in short :
(a) If $\mathrm{B}(x, 2)=\frac{1}{3}$, then find the value of x.
(b) Show that $\mathrm{B}(\mathrm{m}+1, \mathrm{n})=\mathrm{B}(\mathrm{m}, \mathrm{n}+1)=\mathrm{B}(\mathrm{m}, \mathrm{n})$
(c) If $\phi=\mathrm{XYZ}$, then find the value of $|\operatorname{grad} \phi|$ at the point $(1,2,-1)$.
(d) If $\overline{\mathrm{r}}=\mathrm{X} \overline{\mathrm{i}}+\mathrm{Y} \overline{\mathrm{j}}+\mathrm{Z} \overline{\mathrm{k}}$, then find $\operatorname{div} \overline{\mathrm{r}}$.
(e) Evaluate $\int(x d y-y d x)$ over the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.
(f) Obtain the area of region R by Green's theorem.
(g) Find P.D.E. of $\mathrm{z}=\mathrm{y}+\mathrm{ax} x^{2} \mathrm{y}+\mathrm{b}$, where a and b are parameters.

