

Seat No. : _____

XZ-129

April-2013

B.Sc. (Sem.-IV)

Mathematics : 204

(Advance Calculus-II)

Time : 3 Hours]

[Max. Marks : 70

- **Instructions :** (1) **All** the questions are compulsory.
 - (2) Each question carry **14** marks.
 - (3) Notations are usual.

1. (a) Change the order of integration in the integral $\int_{0}^{a} \int_{x/a}^{2a-x} xy \, dy \, dx$ and hence evaluate it.

OR

Change the order of integration in the integral $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ and hence evaluate it.

(b) Evaluate :
$$\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} xy \, dx \, dy$$
$$OR$$
$$Evaluate : \int_{1}^{e} \int_{0}^{\log y} \int_{1}^{e^{x}} \log z \, dz \, dx \, dy$$

2. (a) State and prove Duplication formula for beta and gamma function.

OR

Define Divergence of a vector function in \mathbb{R}^3 . Prove that

$$\operatorname{div}(\overline{f} \times \overline{g}) = \overline{g} \cdot \operatorname{curl} \overline{f} - \overline{f} \cdot \operatorname{curl} \overline{g}$$

(b) (i) Prove that
$$\operatorname{div}(\mathbf{r}^n \ \mathbf{r}) = (n+3)\mathbf{r}^n$$

(ii) Prove that $\nabla^2 (\mathbf{r}^n \, \mathbf{r}) = n \, (n+3) \mathbf{r}^{n-2} \, \mathbf{r}$ OR

Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

XZ-129

3. (a) State and prove Green's theorem.

OR

State and prove Stoke's theorem.

(b) Using Green's theorem evaluate $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the boundary of the region bounded by $Y^2 = X$ and $X^2 = y$.

Verify Gauss Divergence theorem for the vector field \overline{F} on the region V, where $\overline{F}(X, Y, Z) = XY\overline{i} + YZ\overline{j} + ZX\overline{k}$, V is the solid cylinder $X^2 + Y^2 \le 1, 0 \le Z \le 1$.

- 4. Attempt any **two** :
 - (a) Define Partial Differential Equation. State Lagrange's equation for P.D.E and discuss the method for solving it.
 - (b) Solve P.D.E. $x^{3}p + y^{3}q = (x^{2} xy + y^{2})z$.
 - (c) Derive P.D.E. for f(X Z, Y Z) = 0.
- 5. Answer in short :
 - (a) If $B(x, 2) = \frac{1}{3}$, then find the value of x.
 - (b) Show that B(m + 1, n) = B(m, n + 1) = B(m, n)
 - (c) If $\phi = XYZ$, then find the value of $|\text{grad}\phi|$ at the point (1, 2, -1).
 - (d) If $\overline{r} = X\overline{i} + Y\overline{j} + Z\overline{k}$, then find div \overline{r} .
 - (e) Evaluate $\int (xdy ydx)$ over the parabola $y = x^2$ from (0, 0) to (1, 1).
 - (f) Obtain the area of region R by Green's theorem.
 - (g) Find P.D.E. of $z = y + ax^2 y + b$, where a and b are parameters.