Seat No. : _____

AN-106

August-2021

B.Sc., Sem.-V

305 : Mathematics (Discrete Mathematics) (Elective Paper)

Time : 2 Hours]

[Max. Marks : 50

Instructions :		 (1) Attempt any 3 out of first 6 questions. 7th question is compulsory. (2) Figures to the right indicate full marks of the question/sub-question. (3) Notations used in this question paper carry their usual meaning. 			
1.	(A)	Let $\langle P, \leq \rangle$ be a poset and $A \subset P$, $A \neq \phi$. Show that $\langle A, \leq \rangle$ is a poset.	7		
	(B)	Let $\langle P,R\rangle$ be a poset then prove that $\langle P,\overline{R}\rangle$ is a poset.	7		
2.	(A)	Show that $\langle P(X), \subseteq \rangle$ is a lattice.	7		
	(B)	For a lattice $\langle L, \leq \rangle$ prove that	7		
		$a \le b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b.$			
3.	(A)	Define : Complete Lattice, Complemented Lattice.	7		
		Prove that every finite lattice is complete.			
	(B)	State and prove De' Morgan's laws in a Boolean algebra.	7		
4.	(A)	Prove that the direct product of any two distributive lattices is a distributive lattice.	7		
	(B)	Show that in a Boolean algebra	7		
	~ /	$a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow a' \oplus b = 1 \Leftrightarrow b' \le a'.$			
AN-	106	1 P.T.	0.		

5.	(A)	Prove that the sum of all minterms in n variables is 1.	7
	(B)	Find POS and SOP canonical forms of the Boolean expressions	7
		(1) $\alpha(x_1, x_2, x_3) = (x_1 * x_2) \oplus x_3$	
		(2) $\alpha(x_1, x_2, x_3) = x_1 \oplus x_2$	
6.	(A)	State and prove Stone's representation theorem.	7
	(B)	Let $\langle L, *, \oplus \rangle$ be a distributive lattice, for a, b, c \in L, prove that	7
		$(a * b) \oplus (b * c) \oplus (c * a) = (a \oplus b) * (b \oplus c) * (c \oplus a).$	
7.	Ans	wer in short (Any Four) :	8
7.	Ans (a)	wer in short (Any Four) : Define irreflexive relation and give an example.	8
7.			8
7.	(a)	Define irreflexive relation and give an example.	8
7.	(a) (b)	Define irreflexive relation and give an example. Define : upper bound of a set in a poset.	8
7.	(a) (b) (c)	Define irreflexive relation and give an example. Define : upper bound of a set in a poset. Draw the Hasse diagram of $\langle S_{11}, D \rangle$.	8
7.	 (a) (b) (c) (d) 	Define irreflexive relation and give an example. Define : upper bound of a set in a poset. Draw the Hasse diagram of $\langle S_{11}, D \rangle$. Find all atoms of $\langle S_6, D \rangle$ Boolean algebra.	8
7.	 (a) (b) (c) (d) (e) 	Define irreflexive relation and give an example. Define : upper bound of a set in a poset. Draw the Hasse diagram of $\langle S_{11}, D \rangle$. Find all atoms of $\langle S_6, D \rangle$ Boolean algebra. Let $\langle N, D \rangle$ be a poset. Find LUB of the subset A = {2, 3} of N.	8

Seat No. : _____

AN-106

August-2021

B.Sc., Sem.-V

305 : Mathematics (Number Theory) (Elective Course)

Time : 2 Hours] [Max. Marks : 50			
Instructio	ons: (1)	Attempt any three questions from Q-1 to Q-6.	
	(2)	Q-7 is compulsory question of short questions.	
	(3)	Notations are usual, everywhere.	
	(4)	Figures to the right indicate marks of the question/sub-question.	
1. (A)	State and	prove Division algorithm theorem.	7
(B)	Using the	Euclidean algorithm to obtain the integer x and y such that	
	gcd	(12378, 3054) = 12378x + 3054y.	7
2. (A)	Find the integers.	solution of linear Diophantine equation $54x + 21y = 906$ in positive	tive 7
(B)	Prove that	at there are an infinite number of primes of the form $4n + 3$.	7
3. (A)		notation prove that $2^{20} \equiv l \pmod{41}$ and find the remainder when the s 3! + + 100! is divisible by 12.	sum 7
(B)		re exists a solution of the congruence $15x \equiv 9 \pmod{12}$? If so, find our congruent solution of it.	t all 7
4. (A)	Define co	ongruence relations and prove that it is an equivalence relation.	7
(B)	Using Ch	ninese remainder theorem, find integer <i>x</i> such that $2x \equiv 1 \pmod{3}$	
	$3x \equiv 1$ (m	od 5); $5x \equiv 1 \pmod{7}$.	7
AN-106		3	Р.Т.О.

- 5. (A) State and prove Wilson's theorem.
 - (B) If p and q are distinct primes such that $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$, then show that $a^{pq} \equiv a \pmod{pq}$. 7

7

8

6. (A) State and prove the Fermat's little theorem.7(B) Show that $18! \equiv -1 \pmod{437}$.7

- 7. Attempt any **Four** of the followings in short :
 - (a) If p is a prime number and p/ab then prove that p/a or p/b.
 - (b) A number 360 can be written as product of prime in canonical form.
 - (c) Define prime and relatively prime.
 - (d) Prove that the number N = 1571724 is divisible by 9 and 11.
 - (e) If $ax \equiv ay \pmod{n}$ and $(a, n) \equiv 1$, then show that $x \equiv y \pmod{n}$.
 - (f) Define Euler's Phi-function.

Seat No. :

AN-106

August-2021

B.Sc., Sem.-V

305 : Mathematics (Financial Mathematics) (Elective Course)

Time : 2 Hours]

[Max. Marks : 50

Instructions :	(1)	Attempt any three questions from Q-1 to Q-	6.
mon actions.	(1)		Ļ

- (2) Q-7 is compulsory.
- (3) Notations are usual, everywhere.
- (4) Figures to the right indicate marks of the question/sub-question.

1. (A) What is the Future value of \gtrless 21,700 invested for ten years, for opportunity cost (interest rate) is 7% per year compounded annually, semi-annually, quarterly, monthly, weekly, daily, continuously? 7 7

(B) Write a short Note on Time Value of Money.

- 2. (A) What is the Future value of \gtrless 1,40,000 invested for ten years, for opportunity cost (interest rate) is 5% per year compounded semi-annually, quarterly, monthly, and daily also find effective rate of interest in each case? 7
 - (B) Derive the formulas of simple interest, and daily, weekly, monthly, quarterly, semi 7 annually, annually, continuous compounded interest rates.
- 3. (A) Consider a bond of n years with annual coupon payment C and face value F, if its yield (yield to maturity) is λ continuously compounded. Then derive the formula for Macaulay Duration.
 - (B) Consider the cash flow with annual payments of 1000, 2000, -1000, 2000 suppose the relevant annual compound rates are finance rate is 10% and reinvestment rate 20% find MIRR. 7

AN-106

7

- 4. (A) Write a short note on comparison of NPV and IRR.
 - (B) A company wants to immunize its bond portfolio for a targeted period of 3 years for this purpose company has decide to invest ₹ 10,00,000 at present and the details of two bonds are as follows :

	Bond A	Bond B
Face Value	1000	1000
Market Price	986.5	1035
Macaulay Duration	5 years	2 years

Determine the amount of money invested in each bond.

- 5. (A) Write a short note on portfolio diagram and choice of asset. 7
 - (B) Calculate the portfolios mean return and variance using the following details, 7

$$R = (0.3, 1.6, 0.9)^{T}$$
, $W = (0.3, 0.5, 0.3)$ and

$$CV = \begin{bmatrix} 1.2 & 1.4 & 0.9 \\ 1.4 & 2.2 & 0.60 \\ 0.9 & 0.60 & 1.32 \end{bmatrix}$$
find $\bar{r} \& \sigma^2$ for portfolio.

- (A) Discuss Markowitz portfolio optimization problem with short selling and without short selling.
 - (B) Consider a portfolio of three assets, A, B & C with the following properties. 7

$$r_A = 0.2, r_B = 0.4, r_C = 0.6, \sigma_A = \sigma_B = \sigma_C = 1 \& \sigma_{AB} = \sigma_{AC} = 0$$

For fixed $\bar{r} = 0.5$ find the minimum variance portfolio.

AN-106

7

7

- 7. Attempt any **Four** of the followings in short :
 - (a) Define inflation and write its formula.
 - (b) Write types of financial instrument.
 - (c) Define Puttable Bonds.
 - (d) Write the Formula for Fisher Weill Duration for discrete compounding.
 - (e) Define diversification in portfolio.
 - (f) Write the statement of two fund theorem.